期刊文献+

食饵带收获率的捕食者-食饵模型的Hopf分岔 被引量:4

Hopf bifurcation of predator-prey model with harvest rate
下载PDF
导出
摘要 为研究收获率参数对生物模型稳定性的影响,通过计算第一Lyapunov系数和中心流形方法,对食饵带收获率参数的捕食者-食饵模型进行Hopf分岔分析,得出了收获率参数对于生物模型稳定性的影响结果,并给出了生物模型所对应的超临界和亚临界Hopf分岔曲面. To study the influence of harvest rate parameter on the stability of biological model, Hopf bifurcation analysis on the predator-prey model with harvest rate is carried out by calculating the first Lyapunov coefficient and using the central manifold method. The influence of the harvest rate parameter on the stability of the biological model is given, and the supercritical and subcritical Hopf bifurcated surfaces corresponding to the biological model are given.
出处 《高师理科学刊》 2017年第5期10-13,共4页 Journal of Science of Teachers'College and University
基金 2016年福建省中青年教师教育科研项目(JAT160881) 2016年湄洲湾职业技术学院院级科研项目(mzy1605)
关键词 收获率 捕食者-食饵模型 稳定性 HOPF分岔 harvest rate predator-prey model stability Hopf bifurcation
  • 相关文献

参考文献5

二级参考文献50

  • 1徐瑞,郝飞龙,陈兰荪.一个具有时滞和阶段结构的捕食-被捕食模型[J].数学物理学报(A辑),2006,26(3):387-395. 被引量:30
  • 2Hassard B,Kazarinoff D,Wan Y.Theory and Applications of Hopf Bifurcation[M].Cambridge:Cambridge University Press,1981.
  • 3Ruan S,Wei J.On the zeros of transcendental functions with applications to stability of delay differential equations with two delays[J].Dynamic Analysis of Spatial Structures Session Organizer,2003,10(6):863- 874.
  • 4Song Y,Peng Y.Stability and bifurcation analysis on a Logistic model with discrete and distributed delays[J]. Applied Mathematics and Computation,2006,181(2):1745-1757.
  • 5May R M.Time delay versus stability in population models with two and three trophic levels[J].Ecology, 1973,4(2):315-325.
  • 6Yan X-P,Zhang C-H.Hopf bifurcation in a delayed Lokta-Volterra predator+prey system[J].Nonlinear Analysis:Real World Applications,2008,9(1):114-127.
  • 7Ma Z,Huo H.Stability and Hopf bifurcation analysis on a predator-prey model with discrete and distributed delays[J].Nonlinear Analysis:Real World Applications,2009,10(2):1160-1172.
  • 8Chen Y,Song C.Stability and Hopf bifurcation analysis in a prey-predator system with stage-structure for prey and time delay[J].Chaos Solitons Fractals,2008,8(1):1104-1114.
  • 9Meng X,Wei J.Stability and bifurcation of mutual system with time delay[J].Chaos,Solitons and Fractals, 2004,21(3):729-40.
  • 10Qin Y,Wang L,Liu Y,et al.Stability of the dynamics systems[M].Beijing:Science Press,1989.

共引文献4

同被引文献10

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部