期刊文献+

基于乘积偏好关系的专家模糊核聚类赋权方法 被引量:3

Method of Expert Fuzzy Kernel Clustering Weighting Based on Multiplicative Preference Relations
下载PDF
导出
摘要 多属性、多目标性决策中,针对专家给出各方案偏好关系下的决策问题,提出一种基于乘积偏好关系的专家模糊核聚类赋权方法。该方法运用模糊核聚类的思想实现对决策专家的聚类,并通过放宽归一化约束条件,克服了传统模糊核聚类算法中离群点对聚类结果的影响。同时,在专家类内赋权过程中,运用CI-IOWG算子集结同类专家的意见,依据不同专家对于形成类别一致性意见的贡献程度来确定专家权重;克服了传统基于熵权或判断矩阵一致性的赋权方法的局限性。算例表明,该方法可行、有效。 Within the multiple attributes and multi-objective decision making problems, for the case that each decision maker has a preference relation referring to alternatives, a method of expert fuzzy kernel clustering weighting based on multiplicative preference relations is proposed, in which the experts are classified by using fuzzy kernel clustering principle. By loosening the normalization constraints, the effects of outliers on the clustering results could be overcome. At the same time, this paper presents CI-IOWG operator for group decision-making with muhiplicative preference relation in the process of determining the intra class weight. And the weighting method can determine the experts' weight according to the contribution degree for clustering which overcomes the limitations of the traditional weighting method based on entropy and consistency. The example shows that the method is feasible and effective.
出处 《火力与指挥控制》 CSCD 北大核心 2017年第5期56-62,共7页 Fire Control & Command Control
基金 "十二五"国防预研基金资助项目(51327020104)
关键词 乘积偏好关系 专家赋权 模糊核聚类 CI-IOWG算子 muhiplieative preference relation, experts' weights, fuzzy kernel clustering, CI-IOWG operator
  • 相关文献

参考文献4

二级参考文献54

  • 1伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 2徐泽水,赵华.偏好信息为模糊互反判断矩阵的模糊多属性决策法[J].模糊系统与数学,2004,18(4):115-121. 被引量:29
  • 3王文平.不完备信息下的多目标优化方法研究[J].系统工程学报,1996,11(2):1-6. 被引量:17
  • 4修宇,王士同,吴锡生,胡德文.方向相似性聚类方法DSCM[J].计算机研究与发展,2006,43(8):1425-1431. 被引量:21
  • 5Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641.
  • 6Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552.
  • 7Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
  • 8Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116.
  • 9Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
  • 10Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.

共引文献113

同被引文献33

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部