摘要
回顾了特征选择的主要原理及其在生物信息学中的最新应用。我们将特征选择看作组合优化或搜索问题,将特征选择法分为穷举搜索法、启发式搜索法以及混合法,其中启发式搜索法可以被进一步分为是否结合数据特征重要程度的排序,这样比常规对特征选择方法以滤波、封装和嵌入式的分类更为合理。
We summarize feature selection approaches with recent applications in bioinformat ics. We suggest to deviate from the commonly used categorization of feature selection approaches into filter, wrapper, and embedded approaches. Instead, we view feature selection as a combina- torial optimization or a search problem, by classifying feature selection approaches into exhaus- tive search, heuristic search, and hybrid methods, with heuristic search approaches further divid- ed into those with or without feature importance ranking.
出处
《太原理工大学学报》
北大核心
2017年第3期458-468,共11页
Journal of Taiyuan University of Technology
关键词
计算生物学
智能计算
数据挖掘
进化计算
神经网络
bioinformatics
omputational intelligence
data mining
evolutionary computation
neural networks