期刊文献+

ENTIRE FUNCTIONS SHARING ONE SMALL FUNCTION CM WITH THEIR SHIFTS AND DIFFERENCE OPERATORS 被引量:3

ENTIRE FUNCTIONS SHARING ONE SMALL FUNCTION CM WITH THEIR SHIFTS AND DIFFERENCE OPERATORS
下载PDF
导出
摘要 In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of finite order, c be a nonzero finite complex constant, and n be a positive integer. If f(z), f(z+c), and △n cf(z) share 0 CM, then f(z+c)≡Af(z), where A(≠0) is a complex constant. Moreover, let a(z), b(z)( O) ∈ S(f) be periodic entire functions with period c and if f(z) - a(z), f(z + c) - a(z), △cn f(z) - b(z) share 0 CM, then f(z + c) ≡ f(z). In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of finite order, c be a nonzero finite complex constant, and n be a positive integer. If f(z), f(z+c), and △n cf(z) share 0 CM, then f(z+c)≡Af(z), where A(≠0) is a complex constant. Moreover, let a(z), b(z)( O) ∈ S(f) be periodic entire functions with period c and if f(z) - a(z), f(z + c) - a(z), △cn f(z) - b(z) share 0 CM, then f(z + c) ≡ f(z).
作者 崔宁 陈宗煊
出处 《Acta Mathematica Scientia》 SCIE CSCD 2017年第3期786-798,共13页 数学物理学报(B辑英文版)
基金 supported by the Natural Science Foundation of Guangdong Province in China(2014A030313422,2016A030310106,2016A030313745)
关键词 Entire function SHIFTS difference operators shared values Entire function shifts difference operators shared values
  • 相关文献

参考文献1

二级参考文献2

共引文献1

同被引文献4

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部