期刊文献+

Excellent Hydrophilic and Anti-bacterial Fouling PVDF Membrane Based on Ag Nanoparticle Self-assembled PCBMA Polymer Brush 被引量:3

Excellent Hydrophilic and Anti-bacterial Fouling PVDF Membrane Based on Ag Nanoparticle Self-assembled PCBMA Polymer Brush
原文传递
导出
摘要 A silver nanoparticles-poly(carboxybetaine methacrylate) (AgNPs-PCBMA) nanocomposite was prepared on poly(vinylidene fluoride) (PVDF) membrane surface to improve its hydrophilicity and antifouling properties. Firstly, the PVDF membranes were grafted by PCBMA via physisorbed free radical grafting technique. Then Ag+ coordinated to the carbonyl group on PCBMA and subsequently was reduced to silver nanoparticles. The hydrophilicity of the PVDF-g- PCBMA/Ag membrane was enhanced with the increasing fixed degree (FD) of AgNPs, and the original water contact angle of membrane was reduced to 33.97°. Additionally, water flux recovery ratio (FRR) and bovine serum albumin (BSA) rejection ratio of PVDF-g-PCBMA/AgNPs membrane were improved from 52% to 93.32% and 28.12% to 91.12%, respectively. Further, the PVDF-g-PCBMA/AgNPs membranes exhibited the more pronounced inhibition zone. The study demonstrated that compared with pure AgNPs or the PCBMA polymer brush, the synergistic effect of PCBMA and AgNPs made PVDF membranes have better hydrophilicity and anti-bacterial performances. A silver nanoparticles-poly(carboxybetaine methacrylate) (AgNPs-PCBMA) nanocomposite was prepared on poly(vinylidene fluoride) (PVDF) membrane surface to improve its hydrophilicity and antifouling properties. Firstly, the PVDF membranes were grafted by PCBMA via physisorbed free radical grafting technique. Then Ag+ coordinated to the carbonyl group on PCBMA and subsequently was reduced to silver nanoparticles. The hydrophilicity of the PVDF-g- PCBMA/Ag membrane was enhanced with the increasing fixed degree (FD) of AgNPs, and the original water contact angle of membrane was reduced to 33.97°. Additionally, water flux recovery ratio (FRR) and bovine serum albumin (BSA) rejection ratio of PVDF-g-PCBMA/AgNPs membrane were improved from 52% to 93.32% and 28.12% to 91.12%, respectively. Further, the PVDF-g-PCBMA/AgNPs membranes exhibited the more pronounced inhibition zone. The study demonstrated that compared with pure AgNPs or the PCBMA polymer brush, the synergistic effect of PCBMA and AgNPs made PVDF membranes have better hydrophilicity and anti-bacterial performances.
出处 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2017年第7期809-822,共14页 高分子科学(英文版)
基金 financially supported by the National Natural Science Foundation of China(Nos.51303028 and 31401609) Test Fund support by Test Center of Fuzhou University
关键词 PVDF membrane Zwitterionic monomer CBMA Silver nanoparticle Antifouling performance Antibacterialability PVDF membrane Zwitterionic monomer CBMA Silver nanoparticle Antifouling performance Antibacterialability
  • 相关文献

同被引文献14

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部