期刊文献+

Simulations of the effects of density and temperature profile on SMBI penetration depth based on the HL-2A tokamak configuration 被引量:1

Simulations of the effects of density and temperature profile on SMBI penetration depth based on the HL-2A tokamak configuration
下载PDF
导出
摘要 Using the trans-neut module of the BOUT++ code, we study how the fueling penetration depth of supersonic molecular beam injection(SMBI) is affected by plasma density and temperature profiles. The plasma densities and temperatures in L-mode are initialized to be a set of linear profiles with different core plasma densities and temperatures. The plasma profiles are relaxed to a set of steady states with different core plasma densities or temperatures. For a fixed gradient, the steady profiles are characterized by the core plasma density and temperature. The SMBI is investigated based on the final steady profiles with different core plasma densities or temperatures. The simulated results suggest that the SMB injection will be blocked by dense core plasma and high-temperature plasma. Once the core plasma density is set to be N(i0)= 1.4N0(N0= 1 × 10^19m^-3) it produces a deeper penetration depth. When N(i0) is increased from 1.4N0 to 3.9N0 at intervals of 0.8N0, keeping a constant core temperature of T(e0)= 725 eV at the radial position of ψ = 0.65, the penetration depth gradually decreases. Meanwhile, when the density is fixed at N(i0)= 1.4N0 and the core plasma temperature T(e0) is set to 365 eV,the penetration depth increases. The penetration depth decreases as T(e0) is increased from 365 eV to 2759 eV. Sufficiently large N(i0) or T(e0) causes most of the injected molecules to stay in the scrape-off-layer(SOL) region, lowering the fueling efficiency. Using the trans-neut module of the BOUT++ code, we study how the fueling penetration depth of supersonic molecular beam injection(SMBI) is affected by plasma density and temperature profiles. The plasma densities and temperatures in L-mode are initialized to be a set of linear profiles with different core plasma densities and temperatures. The plasma profiles are relaxed to a set of steady states with different core plasma densities or temperatures. For a fixed gradient, the steady profiles are characterized by the core plasma density and temperature. The SMBI is investigated based on the final steady profiles with different core plasma densities or temperatures. The simulated results suggest that the SMB injection will be blocked by dense core plasma and high-temperature plasma. Once the core plasma density is set to be N(i0)= 1.4N0(N0= 1 × 10^19m^-3) it produces a deeper penetration depth. When N(i0) is increased from 1.4N0 to 3.9N0 at intervals of 0.8N0, keeping a constant core temperature of T(e0)= 725 eV at the radial position of ψ = 0.65, the penetration depth gradually decreases. Meanwhile, when the density is fixed at N(i0)= 1.4N0 and the core plasma temperature T(e0) is set to 365 eV,the penetration depth increases. The penetration depth decreases as T(e0) is increased from 365 eV to 2759 eV. Sufficiently large N(i0) or T(e0) causes most of the injected molecules to stay in the scrape-off-layer(SOL) region, lowering the fueling efficiency.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期218-227,共10页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation for Young Scientists of China(Grant No.11605143) the Undergraduate Training Programs for Innovation and Entrepreneurship of Sichuan Province,China(Grant No.05020732) the National Natural Science Foundation of China(Grant No.11575055) the Fund from the Department of Education in Sichuan Province of China(Grant No.15ZB0129) the China National Magnetic Confinement Fusion Science Program(Grant No.2013GB107001) the National ITER Program of China(Contract No.2014GB113000) the Funds of the Youth Innovation Team of Science and Technology in Sichuan Province of China(Grant No.2014TD0023)
关键词 TOKAMAK plasma fueling SMBI penetration depth HL-2A tokamak, plasma fueling, SMBI, penetration depth, HL-2A
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部