期刊文献+

Electronic and thermoelectric properties of Mg2GexSn1-x(x=0.25,0.50,0.75) solid solutions by first-principles calculations 被引量:1

Electronic and thermoelectric properties of Mg_2Ge_xSn-_(1-x)(x=0.25,0.50,0.75) solid solutions by first-principles calculations
下载PDF
导出
摘要 The electronic structure and thermoelectric(TE) properties of Mg2GexSn1-x(x = 0.25, 0.50, 0.75) solid solutions are investigated by first-principles calculations and semi-classical Boltzmann theory. The special quasi-random structure(SQS) is used to model the solid solutions, which can produce reasonable band gaps with respect to experimental results.The n-type solid solutions have an excellent thermoelectric performance with maximum zT values exceeding 2.0, where the combination of low lattice thermal conductivity and high power factor(PF) plays an important role. These values are higher than those of pure Mg2Sn and Mg2Ge. The p-type solid solutions are inferior to the n-type ones, mainly due to the much lower PF. The maximum zT value of 0.62 is predicted for p-type Mg2Ge(0.25)Sn(0.75) at 800K. The results suggest that the n-type Mg2GexSn1-x solid solutions are promising mid-temperature TE materials. The electronic structure and thermoelectric(TE) properties of Mg2GexSn1-x(x = 0.25, 0.50, 0.75) solid solutions are investigated by first-principles calculations and semi-classical Boltzmann theory. The special quasi-random structure(SQS) is used to model the solid solutions, which can produce reasonable band gaps with respect to experimental results.The n-type solid solutions have an excellent thermoelectric performance with maximum zT values exceeding 2.0, where the combination of low lattice thermal conductivity and high power factor(PF) plays an important role. These values are higher than those of pure Mg2Sn and Mg2Ge. The p-type solid solutions are inferior to the n-type ones, mainly due to the much lower PF. The maximum zT value of 0.62 is predicted for p-type Mg2Ge(0.25)Sn(0.75) at 800K. The results suggest that the n-type Mg2GexSn1-x solid solutions are promising mid-temperature TE materials.
机构地区 College of Science
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期280-287,共8页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.11647010) the Foundation from the Higher Education and High-quality and World-class Universities(Grant No.PY201611)
关键词 solid solution electronic structure thermoelectric transport property solid solution, electronic structure, thermoelectric transport property
  • 相关文献

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部