摘要
In order to synthesize high-quality type-Ⅱa large diamond, the selection of catalyst is very important, in addition to the nitrogen getter. In this paper, type-IIa large diamonds are grown under high pressure and high temperature(HPHT) by using the temperature gradient method(TGM), with adopting Ti/Cu as the nitrogen getter in Ni70Mn25Co5(abbreviated as NiMnCo) or Fe(55)Ni(29)Co(16)(abbreviated FeNiCo) catalyst. The values of nitrogen concentration(Nc) in both synthesized high-quality diamonds are less than 1 ppm, when Ti/Cu(1.6 wt%) is added in the FeNiCo or Ti/Cu(1.8 wt%) is added in the NiMnCo. The difference in solubility of nitrogen between both catalysts at HPHT is the basic reason for the different effect of Ti/Cu on eliminating nitrogen. The nitrogen-removal efficiency of Ti/Cu in the NiMnCo catalyst is less than in the FeNiCo catalyst. Additionally, a high-quality type-Ⅱa large diamond size of 5.0 mm is obtained by reducing the growth rate and keeping the nitrogen concentration of the diamond to be less than 1 ppm, when Ti/Cu(1.6 wt%) is added in the FeNiCo catalyst.
In order to synthesize high-quality type-Ⅱa large diamond, the selection of catalyst is very important, in addition to the nitrogen getter. In this paper, type-IIa large diamonds are grown under high pressure and high temperature(HPHT) by using the temperature gradient method(TGM), with adopting Ti/Cu as the nitrogen getter in Ni70Mn25Co5(abbreviated as NiMnCo) or Fe(55)Ni(29)Co(16)(abbreviated FeNiCo) catalyst. The values of nitrogen concentration(Nc) in both synthesized high-quality diamonds are less than 1 ppm, when Ti/Cu(1.6 wt%) is added in the FeNiCo or Ti/Cu(1.8 wt%) is added in the NiMnCo. The difference in solubility of nitrogen between both catalysts at HPHT is the basic reason for the different effect of Ti/Cu on eliminating nitrogen. The nitrogen-removal efficiency of Ti/Cu in the NiMnCo catalyst is less than in the FeNiCo catalyst. Additionally, a high-quality type-Ⅱa large diamond size of 5.0 mm is obtained by reducing the growth rate and keeping the nitrogen concentration of the diamond to be less than 1 ppm, when Ti/Cu(1.6 wt%) is added in the FeNiCo catalyst.
基金
supported by the National Natural Science Foundation of China(Grant No.11604246)
the China Postdoctoral Science Foundation(Grant No.2016M592714)
the Professional Practice Demonstration Base for Professional Degree Graduate in Material Engineering of Henan Polytechnic University,China(Grant No.2016YJD03)
the Funds from the Education Department of Henan Province,China(Grant Nos.12A430010 and 17A430020)
the Project for Key Science and Technology Research of Henan Province,China(Grant No.162102210275)