期刊文献+

Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation–dissolution–regrowth method

Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation–dissolution–regrowth method
下载PDF
导出
摘要 Two kinds of InAs/GaAs quantum dot(QD) structures are grown by molecular beam epitaxy in formation–dissolution–regrowth method with different in-situ annealing and regrowth processes. The densities and sizes of quantum dots are different for the two samples. The variation tendencies of PL peak energy, integrated intensity, and full width at half maximum versus temperature for the two samples are analyzed, respectively. We find the anomalous temperature dependence of the InAs/GaAs quantum dots and compare it with other previous reports. We propose a new energy band model to explain the phenomenon. We obtain the activation energy of the carrier through the linear fitting of the Arrhenius curve in a high temperature range. It is found that the Ga As barrier layer is the major quenching channel if there is no defect in the material. Otherwise, the defects become the major quenching channel when some defects exist around the QDs. Two kinds of InAs/GaAs quantum dot(QD) structures are grown by molecular beam epitaxy in formation–dissolution–regrowth method with different in-situ annealing and regrowth processes. The densities and sizes of quantum dots are different for the two samples. The variation tendencies of PL peak energy, integrated intensity, and full width at half maximum versus temperature for the two samples are analyzed, respectively. We find the anomalous temperature dependence of the InAs/GaAs quantum dots and compare it with other previous reports. We propose a new energy band model to explain the phenomenon. We obtain the activation energy of the carrier through the linear fitting of the Arrhenius curve in a high temperature range. It is found that the Ga As barrier layer is the major quenching channel if there is no defect in the material. Otherwise, the defects become the major quenching channel when some defects exist around the QDs.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期459-464,共6页 中国物理B(英文版)
基金 supported by the National Basic Research Program of China(Grant No.2013CB632104) the National Key Research and Development Program of China(Grant No.2016YFB0402302)
关键词 quantum dot PHOTOLUMINESCENCE anomalous temperature dependence activation energy quantum dot, photoluminescence, anomalous temperature dependence, activation energy
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部