摘要
为了进一步研究高度非线性和非确定性水环境系统的变化规律,预测复杂、模糊、高度非线性河流水质。以黄河内蒙古河段为例,构建以上游断面监测数据预测下游水质变化的BP神经网络模型。模型选用L-M数值优化算法,采用3-6-1型网络结构,对黄河内蒙古河段2013—2014年各监测断面COD监测值进行训练。结果表明:BP神经网络具有很强的非线性映射能力和柔性的网络结构,可以很好地应用于黄河内蒙古河段COD预测,平均相对误差为5.66%,预测精度较高,为河段水环境治理、水质监测和控制污染提供借鉴意义。
In order to study the variation of highly nonlinear and non - deterministic water environ-ment systems, and predict the complexity, fuzzy and highly nonlinear river water quality, taking the Inner Mongolia reach of the Yellow River as an example, the B P neural network model for predicting the change of downstream water quality was established. The model uses the L - M numerical opti-mization algorithm, and uses the 3 - 6 - 1 type network structure to train the monitoring COD moni-toring value of the monitoring section of the Yellow River Inner Mongolia during 2013 and 2014. The results show that the B P neural network has a strong nonlinear mapping ability and flexible network structure, which can be applied to the C O D prediction of the Yellow River in Inner Mongolia, with an average relative error of 5. 6 6% and high prediction accuracy. The results can provide reference for environmental management, water quality monitoring and pollution control of the Yellow River.
作者
琚振闯
王晓
弓艳霞
JU Zhenchuang WANG Xiao GONG Yanxia(College of Chemical Engineering, Qinghai University, Xining 810016 , China)
出处
《青海大学学报(自然科学版)》
2017年第3期88-92,102,共6页
Journal of Qinghai University(Natural Science)
基金
黄河水资源保护科学研究院项目
关键词
水质预测
BP神经网络
L-M算法
黄河
artificial neural network
B P network model
Levenberg - Marguardt algorithm
Yellow River