期刊文献+

航空公司微博评论的意见信息抽取研究——以国航、南航和东航为例 被引量:6

Research on Information Extraction of Airline Microblog Reviews——Taking Air China, China Southern Airlines and China Eastern Airlines as Example
原文传递
导出
摘要 如今越来越多的乘客选择乘坐舒适快捷的飞机出行,中国航空运输需求因此逐年增长,航空公司在获得更多盈利空间的同时也面临激烈的竞争.对航空公司的用户评论进行意见信息抽取,不仅可用于航空公司改进服务质量和用户体验,还可为用户选择满意的航空公司提供参考.文章首次以新浪微博平台上航空公司的用户评论为基础数据,利用条件随机场进行意见信息抽取.在有关研究中,专家学者大多凭借以往知识的了解对特征对象和特征词进行人工标注,鲜少分析用户在本评论语料中的关注点.因此,文章创新性地在人工标注前首先利用TF-IDF算法进行关键词提取,找到本评论语料中用户的关注点,最后以超过93%的F平均值证明模型的有效性,为后续的研究提供了新方向. Nowadays, the requirements of air transportation increased year after year, whether the business man or the common people are more and more willing to choose the comfortable and speedy plane as their transportation. The airline get the more profit, as well, the competition between the different airlines is intense. Not only does it can improve quality of service and user experience, but also provide more reference for passengers by using the comment of airline based on information extraction. In this paper, we use the conditional random field to extract information of comments based on the comments of airlines from Sina Weibo. In the relevant study, most experts and researchers utilize manually annotated to deal with feature object and feature words on the basis of past knowledge. Nobody has made a careful analysis of users' concerns of comments corpus. Therefore, we creatively use the TF- IDF algorithm to extract keywords before manually annotated and find the users' concerns in comment corpus. Finally, it proves the validity of the model by F-value which is more than 93%, and it provides a new direction for the follow-up study.
出处 《系统科学与数学》 CSCD 北大核心 2017年第4期1072-1091,共20页 Journal of Systems Science and Mathematical Sciences
基金 国家社科基金重大项目(13&ZD171) 辽宁省教育厅科学研究项目(LN2016YB026) 东北财经大学研究生教学改革研究项目(yjyb201634)资助课题
关键词 意见信息 条件随机场 航空公司 微博评论 词频分析 Information of comments, conditional random fields, airline, Microblog comment, analysis of word frequency.
  • 相关文献

参考文献4

二级参考文献44

  • 1孙宏林,俞士汶.浅层句法分析方法概述[J].当代语言学,2000,2(2):74-83. 被引量:38
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3夏天.汉语词语语义相似度计算研究[J].计算机工程,2007,33(6):191-194. 被引量:63
  • 4王根,赵军.基于多重冗余标记CRFs的句子情感分析研究[J].中文信息学报,2007,21(5):51-55. 被引量:32
  • 5Popescu A, Etzioni 0. Extracting product features andopinions from reviews. Proc. of Human LanguageTechnology Conference and Conference on EmpiricalMethods in Natural Language Processing (HLT/EMNLP).2005.339-346.
  • 6Kobayashi N, Inui K,Matsumoto Y, et al. Collectingevaluative expressions for opinion extraction. Proc. of The1st International Joint Conference on Natural LanguageProcessing. Sanya City. Hainan Island, China. 2004.584-589.
  • 7Hu M,Liu B. Mining opining features in customer reviews.19th National Conf. on Artificial Intelligence (AAAI,04).2004. 755-760.
  • 8Liu B, Hu M, Cheng J. Opinion observer: Analyzing andcomparing opinions on the web. Proc. of the 14thInternational Conference on World Wide Web, WWW505.2005.342-351.
  • 9Miao Q,Li Q, Dai R. An integration strategy for miningproduct features and opinions. Proc. of the 17th ACMConference on Information and Knowledge Management,CIKM508. 2008. 1369-1370.
  • 10Zhai Z,Liu B,Xu H,Jia P. Grouping product features usingsemi-supervised learning with soft-constraints. Proc. of the23rd International Conference on Computational Linguistics.COLING’IO. 2010. 1272-1280.

共引文献22

同被引文献45

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部