期刊文献+

坩埚厚度对多晶硅定向凝固的影响 被引量:5

Effects of Crucible Thickness on Directional Solidification of Polysilicon
下载PDF
导出
摘要 运用Comsol Multiphysics有限元软件对多晶硅的定向凝固过程进行了模拟,分析了不同坩埚厚度(15、20、25 mm)对多晶硅熔化、结晶过程及晶体热应力的影响。结果表明:当坩埚厚度为15 mm时,熔化所需要的时间最短,比坩埚厚度为20 mm和25 mm时分别少31 min和74 min;结晶初期,坩埚厚度为25 mm时的固液界面最为平坦,最有利于晶体的生长;多晶硅晶体底部边缘和顶部边缘区热应力高;坩埚厚度为15 mm时,晶体内热应力最大,且随着坩埚厚度的增大,两个区域的应力都减小。 The directional solidification process of polysilicon was simulated by using the finite element software Comsol Multiphysics, and the effects of the crucible thickness (15, 20, 25 mm) on the melting, crystallization of polysilicon and the thermal stress of the crystal were analyzed. The results show that when the crucible thickness is 15mm, the melting time is the shortest, which is 31 min and 74rain less than that of the crucible with thickness of 20 mm and 25 mm respectively. When the crucible thickness is 25mm, the solid-liquid interface is the flat test at the initial stage of crystallization, which is beneficial to the crystal growth. The thermal stresses at bottom edge and top edge of the polysilicon crystal are high. When the crucible thickness is 15 mm, the thermal stress is maximum,and with the increase of the crucible thickness, the thermal stresses in the two regions reduce.
出处 《热加工工艺》 CSCD 北大核心 2017年第11期74-77,共4页 Hot Working Technology
基金 国家自然科学基金资助项目(51164033) 江西省自然科学基金项目(20132BAB206021) 江西省高等学校科技落地计划项目(KJLD12050) 江西省教育厅科学技术研究项目(11739 12748 GJJ151220)
关键词 多晶硅 温度场 热应力 数值模拟 polysilicon temperature field thermal stress numerical simulation
  • 相关文献

参考文献5

二级参考文献52

  • 1Ingo B Hagemann. Examples of successful architectural integration of PV: Germany [ J]. Prog Photovolt: Res Appl,2004, (12) :461-470.
  • 2Jiro Ohno. Examples of successful architectural integration of PV:Japan[J].Prog Photovolt: Res Appl, 2004, (12) : 471- 476.
  • 3Deo K Prasad, Mark Snow. Examples of successful architectural integration of PV : Australia [ J ] . Prog Photovolt : Res Appl,2004, (12) :477-483.
  • 4Ciszek. Method and apparatus for casting conductive and semiconductive materials [P].United States Patent: 4572812,1986.
  • 5Dour G, Ehret E, Laugier A, et al. Continuous solidification of photovoltaic multicrystalline silicon from an inductive cold crucible[J]. Journal of Crystal Growth, 1998,193 (1):230- 240.
  • 6Perichaud I, Martinuzzi S, Durand F. Multicrystalline silicon prepared by electromagnetic continuous pulling: recent results and comparison to directional solidification material [J].Solar Energy Materials and Solar Cells, 2002,72:101-107.
  • 7Durand F. Electromagnetic continuous pulling process compared to currentcasting processes with respect to solidification characteristics[J].Solar Energy Materials and Solar Cells,2002,72 : 125-132.
  • 8Nakagawa K, Onizuka T, Sasatani K, et al. Manufacturing of Silicon Ingot by Electromagnetic Casting[A]. The 5th International Symposium on Electromagnetic Processing of Materials[C]. Japan, 2006: 773-777.
  • 9WU B, STODDARD N, MA R, et al. Bulk multicrystalline sili- con growth for photovoltaie (PV) application [J]. J Cryst Growth,2008,310(7-9) :2178-2184.
  • 10CHANG C E, WILCOX W R. Control of interface shape in the vertical bridgman-stoekbarger technique[J]. J Cryst Growth, 1974,21(1) : 135- 140.

共引文献40

同被引文献33

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部