期刊文献+

融入习语信息的网络评论情感分析研究 被引量:9

Research on Sentiment Analysis of Social Network Reviews with Idioms
下载PDF
导出
摘要 基于网络评论的情感分析已经成为近些年的研究热点.简单来说,该任务是通过使用一些基于规则或统计机器学习算法对文本进行情感倾向分析,这些文本通常是用户针对某个商品或电影做出的评论.在目前主流的研究工作中,通常使用基于特征工程的方法,如支持向量机(SVM)、朴素贝叶斯(NB)等,或者使用目前比较热门的基于深度学习的方式,如卷积神经网络(CNN),递归神经网络(RNN)来解决这个问题.这些模型普遍存在一个潜在缺点,即无法对网络评论里面出现的习语进行建模.然而,用户在进行商品或电影的评论时,习语往往被用来表达某种情感.所以,挖掘评论中的习语信息对整个句子的情感判断至关重要.因此,提出一种可融入习语信息的树型-长短时记忆网络(Idiom-based Tree-LSTM)模型,可以很好地对习语进行建模.我们在两个相关的数据集上做了评测,实验结果表明本文的模型在该任务中取得了较好的效果. Recently, sentiment analysis of social network reviews has become a hot research topic. Simply speaking,it is a task to analyze the sentiment of reviews about products or movies using rule-based or statistical machine learning algorithms. Most of the related works are based on feature engineering, such as SVM, NB. Some other methods are based on deep learning, such as RNN, CNN. How- ever, these models have a potential weakness in common, that is they cannot model idioms in the reviews. Clearly, when people make reviews about products or movies, idioms are always used to express some kinds of emotions. Therefore, it is of great importance to consider the information of idioms in the reviews when analyzing the sentiment of the whole sentence. To address this problem, we propose an Idiom-based Tree Long-Short Term Memory model which can utilize idioms' information when modeling sentences. We evaluate our model on two datasets related to sentiment classification. The experimental results show the effectiveness of our proposed model.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第6期1273-1277,共5页 Journal of Chinese Computer Systems
关键词 习语 情感分析 神经网络 树型-长短时记忆网络 idioms sentiment analysis neural network tree long-short term memory ( Tree-LSTM )
  • 相关文献

参考文献2

二级参考文献9

  • 1姚天昉,聂青阳,李建超,李林琳,陈柯,付宁.一个用于汉语汽车评论的意见挖掘系统[C]//中文信息处理前沿进展-中国中文信息学会二十五周年学术会议论文集.北京:清华大学出版社,2006:260-281.
  • 2Hong Yu, Vasileios Hatzivassiloglou. Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences [C]//Proceedings of EMNLP 2003,2003: 129-136.
  • 3Ellen Riloff, Janyce Wiebe, William Phillips. Exploiting subjectivity classification to improve information extraction [ C ]//Proceedings of AAAI-2005, 2005: 1106-1111.
  • 4Minqing Hu,Bing Liu. Mining opinion features in customer reviews[C]//Proceedings of AAAI-2004,2004: 755-760.
  • 5倪茂树,林鸿飞.基于关联规则和极性分析的商品评论挖掘[C]//第三届全国信息检索与内容安全学术会议,2007:635-642.
  • 6Soo-Min Kim,Eduard Hovy. Automatic detection of opinion bearing words and sentences[C]//Proceedings of IJCNLP-2005,2005 : 61-66.
  • 7Jun Zhao,Kang Liu,GenWang. Adding redundant features for crfs based sentence sentiment classification [C]//Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, 2008: 117-126.
  • 8Minqing Hu, Bing Liu. Mining and summarizing customer reviews [C]//Proceedings of KDD-2004, 2004 : 168-177.
  • 9姚天昉,娄德成.汉语语句主题语义倾向分析方法的研究[J].中文信息学报,2007,21(5):73-79. 被引量:78

共引文献146

同被引文献73

引证文献9

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部