期刊文献+

多维相似度特征的社交网络链接分类 被引量:1

Multidimensional Similarity Feature Link Classification in Social Networks
下载PDF
导出
摘要 深入挖掘社交网络的特征信息对链接的分类具有重要作用.然而已有的特征均基于单维网络构建,忽视了社交网络的多维复杂性及特征之间的冗余信息问题.为解决此问题,提出一种基于RReliefF特征选择模型的多维社交网络链接分类算法.该方法首先在单维相似度特征模型的框架下给出维度关联因子的定义,然后通过改进基于加权传播的的相似度指标,构造多维特征相似度,最后引入RReliefF算法对特征进行选择,有效处理了特征间的冗余信息和噪音信息.在YouTube数据集的实验结果表明,引入的维度关联因子提高了特征的多维度属性,对多维特征信息分析和选择有助于筛选判别性的特征,提高链接分类的质量,验证该方法的有效性. Mining social network feature information plays an important role on link classification. However,existing features are based on single-dimensional social network, ignoring their multi-dimensional complexity and redundant information between features. To solve this problem,this paper presents a RReliefF feature selection based multi-relational link classification algorithm. Firstly, in the framework of similarity methods in single-dimensional model, we constructed a multidimensional similarity metric by incorporating the dimensional correlation factor and weighted cascading similarity index, then introduced RReliefF feature selection algorithm to effec- tively deal with the redundant information and noise information between such features. The experimental results on YouTube datasets show that the introduced dimensional correlation factor indeed improve the characteristics of the multi-dimensional attributes. And the feature selection process is helpful to determine the discrimitive multi-dimensional characteristics, thereby enhancing the quality of the link classification.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第6期1323-1328,共6页 Journal of Chinese Computer Systems
基金 广东省优秀青年教师项目(YQ2015177)资助 广东省科技计划项目(2011B080701082)资助
关键词 社交网络 多维网络 关系分类 链接分类 特征选择 RRelief F算法 social networks multi-dimensional network relational classification link classification feature selection RReliefF algorithm
  • 相关文献

参考文献6

二级参考文献152

  • 1王惠文,吴载斌,盂浩.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,2006,(9).
  • 2汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012.
  • 3FERNGSON B,ZHANG Xi-cheng. Materials for terahertz science andtechnology[J], Nature Materials,2002,1 (1) :26-33.
  • 4SIEGEL P H. Terbaertz technology[J]. IEEE Trans on MicrowaveTheory & Techniques,2002,50(3) :910-928.
  • 5NAGEL M,BOLIVAR P H,BRUCHEHSERIFER M. Integrated THztechnology for label-free genetic diagnostics [J]. Applied PhySiCSLetters, 2002,80(1): 154-156.
  • 6WITTEN J M,PARK S,MYERS K J. Partial least squares : a methodto estimate efficient channels for the ideal observers [J]. IEEE Transon Medical Imaging,2010,29(4) :1050-1058.
  • 7LI Cui-ying,LI Wei-guo. Partial least squares method based on leastabsolute shrinkage and selection operator[C]//Proc of the 3rd Inter-national Conference on Advanced Computer Theory and Engineering.2010:591-593.
  • 8LIU Ke-ping, JIN Jing,MA Guang-cheng,et al. Study on purifcationsystem of air separation equipment based on particalLeast squaremethod [C] //Proc of International Conference on Computer,Mecha-tronics ,Control and Electronic Engineering. 2010:340-343.
  • 9ZHANG Ran,CAI Wen-chuan,NI Long. Power system load forecas-ting using partial least square method [C] //Proc of the 40th South-eastern Symposium on System Theory. 2008:160-173.
  • 10RAGIONE L D,MECCARIELLO G. Prediction of pollutant emissionusing partial least squares method [C] //Proc of the 32nd InternationalConference on Information Technology Interfaces. 2010 :521-526.

共引文献86

同被引文献35

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部