期刊文献+

基于跳数量化的无线传感器网络节点定位算法 被引量:6

Node Localization Algorithm Based on Hop-count Quantization in Wireless Sensor Networks
下载PDF
导出
摘要 为提高无线传感器网络节点定位精度,提出一种基于跳数量化的定位(MDS-HE)算法。将网络中节点的一跳邻居节点集合分割成3个不相交的子集,根据跳环分割的相交区域面积来估算节点间的距离,从而将整数跳数转换成实数跳数,转换后节点间实数跳数更能准确地表示节点间的距离;将实数跳数矩阵应用于多维定标(MDS)算法中,并且引入扩展卡尔曼滤波算法对节点坐标进行准确定位。在节点随机布撒的网络中,对提出的算法进行了仿真和实验分析。仿真和实验结果表明:在不同节点数量情况下,MDS-HE算法的性能优于距离向量定位算法和经典MDS算法,而且在锚节点足够多的条件下,MDS-HE算法定位更加准确。 A novel algorithm based on hop-count quantization and extended Kalman filter based on multi- dimensional scaling (MDS-HE) is proposed to improve the localization accuracy of nodes in wireless sensor networks. The integer hop-count can be transformed into a real number hop-count by partitioning a node's one-hop neighbor set into three disjoint subsets and estimating the distance between nodes by the areas of the intersection regions of hop ring segmentation. The transformed real number hop-count is a more accurate representation of distance between nodes. The real number hop-count matrix is applied to the multidimensional scaling (MDS) method, and the extended Kalman filter is applied to refine accurately the coordinates of nodes. The localization performance of MDS-HE algorithm is simulated and analyzed in WSNs which is composed of nodes deploying randomly over a region. Simulated and experimental results show that the performance of the MDS-HE algorithm outperforms the DV-Hop method and the classical MDS method in the case of different number of nodes. The MDS-HE algorithm is exceedingly accu- rate in case of the enough anchor nodes.
出处 《兵工学报》 EI CAS CSCD 北大核心 2017年第5期932-939,共8页 Acta Armamentarii
基金 国家自然科学基金项目(61573061)
关键词 信息处理技术 无线传感器网络 定位 多维定标算法 跳数量化 扩展卡尔曼滤波 information processing technology wireless sensor network localization multidimensional scaling hop-count quantization extended Kalman filter
  • 相关文献

参考文献3

二级参考文献31

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 2于宁,万江文,吴银锋.无线传感器网络定位算法研究[J].传感技术学报,2007,20(1):187-192. 被引量:51
  • 3Julier S J, Uhlmann J K. Unscented heringand nonlinear estimation [J]. Proceedings of theIEEE, 2004, 92(3):401-422.
  • 4Julier S J. The scaled unscented transformation [ C ] l/Proceeding of the American Control Conference. Washington D. C. , USA: IEEE, 2002 : 4555 - 4559.
  • 5Sage A,Husa G W. Adaptive-hering with unknown prior statistics [ C ]//Proceedings of Joint Automatic Control Conference. Boul- der, USA: American Society of Mechanical Engineers, 1969:760 : 769.
  • 6Yang Y X,Gao W G. An optimal adaptive Kalman-lter[ J]. Jour- nal of Geodesy,2006,80(4) :177 - 183.
  • 7Bulusu N, Heidemann J, Estrin D. calization for very small devices [ J] tions, 2000, 7(5) : 28 -34.
  • 8GPS-less low cost outdoor Io- IEEE Personal Communica- Shang Y, Rural W, Zhang K, Fromherz M. Localization from mere connectivity [ C ]//Proceedings of the International Symposi- um on Mobile Ad Hoc Networking and Computing ( MobiHoc). Annapolis, MD, United States: ACM, 2003:201-212.
  • 9Mao G Q, Baris F. Localization algorithms and strategies for wire- less sensor networks [ M ]. New York : Information Science Refer- ence, 2009.
  • 10Li M, Liu Y H. Rendered path: range-free localization in aniso- tropic sensor networks with holes [ J]. IEEE Transaction on Net- working, 2010, 1(18) : 320 -332.

共引文献23

同被引文献61

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部