期刊文献+

T形截面振子的流致振动特性试验研究 被引量:1

Experimental Study of Flow-Induced Vibration Characteristics of T-shape Cross-Section Oscillator
原文传递
导出
摘要 近年来人们将流致振动(FIV)作为一种新的能源利用手段,针对圆柱型振子开展了较多的研究。随着研究的深入,发现异型截面振子因振动特性不同于圆柱型振子而具有更好的能量汲取特性。本文利用自循环水槽进行T形截面振子流致振动特性试验研究,对比研究T形振子与圆柱振子的流致振动响应差异,分析其能量捕获能力的优劣及适用范围,以期揭示阻尼比对T形振子的振动特性的影响。结果表明:不同于圆形截面振子,T形截面振子的振动表现为"非自限制"特性,出现驰振分支;增大阻尼会抑制T形截面振子的振动与驰振发生的可能性;相对于圆柱型振子而言,T形振子更适用于大流速下的能量汲取。 In recent years,the flow-induced vibration (FIV) has been studied as a new means of energy utilization and a lot of studies were carried out for cylindrical oscillator.With the deepening of study,it is found that compared with cylindrical oscillator,special cross-section vibrator presents better energy capture performance due to its different vibration characteristics.Experimental study of FIV characteristics of T-shape cross-section oscillator was carried out in a self-circulating flume.FIV response difference between T-shape cross-section oscillator and typical cylindrical oscillator was compared.Both advantage and disadvantage of energy capture ability and its application scope were analyzed,and the influence of damping ratio on FIV characteristics of T-shape cross-oscillator was revealed.Results show that the vibration response of T-shape cross-section oscillator is different from cylindrical vibrator due to its "non self-limiting" characteristic,and appears galloping bifurcation.The increase of damping can inhibit the vibration of T-shape oscillator and the possibility of galloping appearing.Relative to cylindrical vibrator,T-shape oscillator is more suitable for energy capture in higher flow rate situation.
出处 《实验力学》 CSCD 北大核心 2017年第2期216-222,共7页 Journal of Experimental Mechanics
基金 国家自然科学基金(51579173) 国家自然科学基金(51379140)
关键词 流致振动 T形截面 阻尼 flow-induced vibration T-shape cross-sections damping
  • 相关文献

参考文献7

二级参考文献54

  • 1孟昭瑛,杨树耕,王仲捷.水下管道涡激振动的实验研究[J].水利学报,1994,26(7):43-50. 被引量:16
  • 2Bishop R E D, Hassan A Y. The lift and drag forces on a circular cylinder in a flowing field [C]//Proceedings of the Royal Society. London, 1964: 51-75.
  • 3Hartlen R T, Currie 1 G. Lift-oscillation model for vortexinduced vibration [J]. Journal of the Engineering Mechanics Division, 1970,96 ( 5 ) :577-591.
  • 4Currie I G, Tumbull D H. Stmamwise oscillations of cylinders near the critical Reynolds number [J]. Journal of Fluids and Structures, 1987, 1 (2) :185-196.
  • 5Facchinetti M L, de Langre E, Biolley F.Vortex shedding modeling using diffusive van der Pol oscillators [J]. Comptes Rendus Mecanique, 2002,330 ( 7 ) :451- 456.
  • 6Facchinetti M L,de Langre E,Biolley F. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004,19 (3) : 123-140.
  • 7Facchinetti M L, de Langre E, Biolley F. Vortex-induced traveling waves along a cable [J]. European Journal of Mechanics B/Fiuids, 2004,23 ( 1 ) : 199-208.
  • 8白莱文斯.流体诱发振动[M].吴恕三,译.北京:机械工业出版社,1981.
  • 9Blevins R D. Flow Induced Vibration[M]. New York:Van Nostrand Reinhold Co, 1990.
  • 10Gabbai R D, Benaroya H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders[J]. Journal of Sound and Vibration, 2005, 282 : 575-616.

共引文献54

同被引文献2

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部