期刊文献+

热磁耦合马氏体相变及其物理效应 被引量:3

Thermomagnetic Coupling Martensitic Transformation and Associated Physical Effects
原文传递
导出
摘要 马氏体相变和磁性转变是两类典型的固态相变,其中,马氏体相变在钢铁等结构材料和形状记忆合金等功能材料中普遍存在,磁性转变在磁性材料中普遍存在。此前,这两类相变一直各自独立发生。在新型磁性形状记忆合金中发现了二者共同发生的热磁耦合马氏体相变现象,此后基于该现象的磁场诱发相变及其引发的磁致应变、磁热、磁电阻等丰富的物理效应成为本领域的研究热点。本文综述了热磁耦合马氏体相变、磁场诱发相变及其物理效应等方面的研究进展,并对未来发展趋势做了展望。 Martensitic transformation and magnetic transition are two kinds of typical solid state phase transitions. The martensitic transformation universally takes place in structural materials such as steel and functional materials such as shape memory alloys. The magnetic transition is a common physical phenomenon in magnetic materials. Previously, the two kinds of phase transitions took place independently until the co-occurrence of both, which is a thermomagnetic coupling martensitie transformation phenomenon, was ob- served in the advanced magnetic shape memory alloys. Based on this thermomagnetic coupling martensitic transformation, magnetic- field-induced phase transformation and the associated physical effects, such as magnetostrain, magnetocaloric and magnetoresistance, have become the new research hotspots in this field. In this paper, the progress of thermomagnetic coupling martensitic transformation, magnetic-field-induced phase transformation and the associated physical effects were reviewed, and the future developments were pros- pected.
出处 《稀有金属》 EI CAS CSCD 北大核心 2017年第5期505-514,共10页 Chinese Journal of Rare Metals
基金 国家自然科学基金重点项目(51331001) 国家"973"计划项目(2012CB619404)资助
关键词 磁性形状记忆合金 热磁耦合马氏体相变 磁场诱发相变 物理效应 magnetic shape memory alloys thermomagnetic coupling martensitic transformation magnetic-field-induced phase trans- formation physical effects
  • 相关文献

参考文献3

二级参考文献49

  • 1Ye, Wenjun, Mi, Xujun, Song, Xiaoyun.Martensitic transformation of Ti-18Nb(at.%) alloy with zirconium[J].Rare Metals,2012,31(3):227-230. 被引量:4
  • 2崔琰,李岩,罗坤,徐惠彬.生物医用钛基无镍记忆合金研究进展[J].稀有金属材料与工程,2010,39(9):1682-1686. 被引量:5
  • 3Ullakko K, Huang J K, Kantner C, O'Handley R C and Kokorin V V 1996 Appl. Phys. Lett. 69 1966.
  • 4Meng F B, Guo H J, Liu G D, Liu H Y, Dai X F, Luo H Z, Li Y X, Chen J L and Wu G H 2009 Chin. Phys. B 18 3031.
  • 5Murray S J, Marioni M, Allen S M, O'Handley R C and Lograsso T A 2000 Appl. Phys. Lett. 77 886.
  • 6Sozinov A, Likhachev A A, Lanska N and Ullakko K 2002 Appl. Phys. Lett. 80 1746.
  • 7Cui Y T, You S Q, Wu L, Wu G H 2009 Acta Phys. Ma Y, Chen J L, Pan F S and Sin. 58 8596 (in Chinese).
  • 8Chmielus M, Zhang X X, Witherspoon C, Dunand D C and Mfillner P 2009 Nature Mater. 8 863.
  • 9Kainuma R, Imano Y, Ira W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T and Ishida K 2006 Nature (London) 439 957.
  • 10Cherechukin A A, Dikshtein I E, Ermakov D I, Glebov A V, Koledov V V, Kosolapov D A, Shavrov V G, Tulaikova A A, Krasnoperov E P and Takagi T 2001 Phys. Lett. A 291 175.

共引文献21

同被引文献14

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部