摘要
将社交网络中的个体设为健康者(S)、传播者(I)、反击者(C)和免疫者(R)4种状态,根据不同状态之间的转移机制建立了SICR谣言传播模型.针对"人云亦云"的社会从众心理,引入个体的自我学习机制,基于BA无标度网络仿真分析了自我学习机制以及初始传播者、天然反击者重要性对谣言传播行为的影响.结果显示:自我学习机制能够促进谣言传播;初始传播者越重要,谣言传播范围越广、速度越快;天然反击者的重要性越高,抑制谣言传播的效果越明显.
The individuals in social networks are divided into four states, susceptible (S), infective (I), counterattack (C) and refractory (R), a kind of transition rule between different states is introduced, and then a new SICR rumor propagation model is established. Based on the social conformity behavior of "follow the herd", this paper introduces a self-learning mechanism in the process of rumor propagation. The effects of self-learning mechanism and the importance of initial infective or counterattack on rumor diffusion are simulated and analyzed based on BA free-scale networks. The results show that self-learning mechanism can promote rumor diffusion; the more important the initial infective is, the wider the sprea-ding range of the rumor will be; and the more important the initial counterattack is, the better the effect of inhibiting rumor diffusion will be.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第5期178-184,共7页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金项目(51368055)
关键词
社交网络
谣言传播
自我学习机制
SICR谣言传播模型
动态转移概率
social network
rumor propagation
self-learning mechanism
SICR rumor-spreading model
dynamic transition probability