期刊文献+

具有自我学习机制的网络谣言传播与仿真研究 被引量:4

Propagation and Simulation Research of Network Rumors with Self-Learning Mechanism
下载PDF
导出
摘要 将社交网络中的个体设为健康者(S)、传播者(I)、反击者(C)和免疫者(R)4种状态,根据不同状态之间的转移机制建立了SICR谣言传播模型.针对"人云亦云"的社会从众心理,引入个体的自我学习机制,基于BA无标度网络仿真分析了自我学习机制以及初始传播者、天然反击者重要性对谣言传播行为的影响.结果显示:自我学习机制能够促进谣言传播;初始传播者越重要,谣言传播范围越广、速度越快;天然反击者的重要性越高,抑制谣言传播的效果越明显. The individuals in social networks are divided into four states, susceptible (S), infective (I), counterattack (C) and refractory (R), a kind of transition rule between different states is introduced, and then a new SICR rumor propagation model is established. Based on the social conformity behavior of "follow the herd", this paper introduces a self-learning mechanism in the process of rumor propagation. The effects of self-learning mechanism and the importance of initial infective or counterattack on rumor diffusion are simulated and analyzed based on BA free-scale networks. The results show that self-learning mechanism can promote rumor diffusion; the more important the initial infective is, the wider the sprea-ding range of the rumor will be; and the more important the initial counterattack is, the better the effect of inhibiting rumor diffusion will be.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第5期178-184,共7页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金项目(51368055)
关键词 社交网络 谣言传播 自我学习机制 SICR谣言传播模型 动态转移概率 social network rumor propagation self-learning mechanism SICR rumor-spreading model dynamic transition probability
  • 相关文献

参考文献4

二级参考文献60

共引文献163

同被引文献23

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部