期刊文献+

融合颜色特征的核相关滤波器目标跟踪 被引量:5

Kernel Correlation Filter Object Tracking Integrated with Color Features
下载PDF
导出
摘要 目标特征表示是视觉目标跟踪领域中的一个热点话题。近年来,核相关滤波器因其时效性在目标跟踪中得到广泛应用,但简单的灰度特征表示难以应对复杂环境中的目标跟踪问题。基于此,融合颜色特征提出了一种实时的目标跟踪方法。实验结果表明,颜色信息可以有效提高目标跟踪的整体性能,该方法能够适应姿态变化、光照变化等多种目标外观变化,平均跟踪速度为62.1帧/s,可以满足实时应用的需求。 Object feature representation is a hot topic in visual object tracking. Recently, kernel correlation filter has found wide application in object tracking with its high efficiency, while the simple pixel representation is not adaptable to tracking in complex scenes. A real-time tracking method integrated with color features is proposed here. Experimental results show that color information can improve the overall performance effectively, and the proposed algorithm can perform superiorly under the condition of different appearance variations, such as pose variation, illumination variation etc. The average tracking speed is 62.1 frames per second, which meets the real-time application requirement.
作者 忽晓伟 陈娟
出处 《电光与控制》 北大核心 2017年第6期43-46,共4页 Electronics Optics & Control
基金 2016年度河南省科技计划项目(162102210316)
关键词 目标跟踪 特征表示 相关滤波器 颜色特征 object tracking feature representation correlation filter color feature
  • 相关文献

参考文献1

二级参考文献15

  • 1ZHOU Q H, LU H CH, YANG M H. Online multiple support instance tracking[J]. IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, 2011,545-552.
  • 2DIETTERICH T G, LATHROP R H, LOZANO-PREZ T. Solving the multiple-instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997, 89(1-2): 31-71.
  • 3VIOLA P, PLATT J C, ZHANG C. Multiple instance boosting for object detection[J]. Proc. Neural Information Processing systems, 2005,1417-1426.
  • 4BABENKO B, YANG M, BELONGIE S, Robust object tracking with online multiple instance learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33:1619-1632.
  • 5ZEISL B, LEISTNER C, SAFFARI A, et al.. On-line semi-supervised multiple-instance learning boosting. 2010 IEEE Conference on Computer Vision and Pattern Recognition,2010:1879.
  • 6PAPAGEORGIOU C P, OREN M, POGGIO T. A general framework for object detection [C].Sixth International Conference on Computer Vision, 1998:555-562.
  • 7OZA N. Online Ensemble Learning [D]. Berkeley:University of California, 2001.
  • 8MASON L, BAXTER J, BARTLETT P, et al.. Functional Gradient Techniques for Combining Hypotheses [M]. Cambridge: MIT Press, 2000,221-247.
  • 9KALAL Z, MATAS J, MILKOLAJCZYK K. Online learning of robust object detectors during unstable tracking [C]. OLCV, 2009.
  • 10KALAL Z, MILKOLAJCZYK K, MATAS J. Tracking-learning-detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,1409-1422.

共引文献28

同被引文献17

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部