期刊文献+

大数据环境下的移动社交网络推荐算法 被引量:1

Big Data Environment of Mobile Social Network Recommendation Algorithm
下载PDF
导出
摘要 社交网络每天都会产生半结构、结构化及非结构化的大量数据,数据的增长速度也远远超出了硬件需求的摩尔定律。目前,社交网络中还存在恶意评论、刷网站关注度等现象,都严重影响了大数据的分析和处理。为了能够有效提高大数据的处理效率及网站推荐的精准度,本文提出了一个个性化的推荐模型,并且分析了此模型的推荐算法,以此能够提高用户使用的满意度,实现准确及高质量的个性化推荐。 social network produces half- structured and unstructured data structure everyday, data growth is fat" beyond the hardware requirements of Moorcg law. At present, the social networking phenomenon such as malicious comments, brash website visibility, they have seriously "affected the big data analysis and processing. In order to be able to effectively improve the process- ing efficiency of large data and website recommendation accuracy, this paper proposes a personalized recommendation model, and analyzes the recommendation algorithm of this model, in order to improve the satisfaction of users and achieve accurate and high quality personalized recommendation.
作者 吴淑凡
出处 《安阳师范学院学报》 2017年第2期61-64,共4页 Journal of Anyang Normal University
关键词 大数据 移动社交 网络推荐算法 big data Mobile social Network recommendation algorithm
  • 相关文献

参考文献2

二级参考文献32

  • 1ASHISH T,JOYDEEP S S,NAMIT J,et al. Hive:a warehousing solution over a map-reduce framework[C] //Proc of Conference on Very Large Databases. Lyon:[s. n.] ,2009.
  • 2OLSTON C,REED B,SRIVASTAVA U,et al. Pig Latin:a not-so-foreign language for data processing[C] //Proc of ACM SIGMOD International Conference on Management of Data. Vancouver,BC:[s. n.] ,2008.
  • 3BU Ying-yi,HOWE B,BALAZINSKA M,et al. HaLoop:efficient iterative data processing on large clusters[C] //Proc of the 36th International Conference on Very Large Data Base. 2010.
  • 4ZHANG Yan-fen,GAO Qin-xin,GAO Li-xin,et al. iMapReduce:a distributed computing framework for iterative computation[C] //Proc of the 25th IEEE International Symposium on Parallel and Distributed Processing. 2011.
  • 5ZAHARIA M,DAS T,LI Hao-yuan,et al. Discretized streams:an efficient and fault-tolerant model for stream processing on large clusters[C] //Proc of the 4th USENIX Conference on Hot Topics in Cloud Computing. 2012.
  • 6ZAHARIA M,CHOWDHURY M,DAS T,et al. Resilient distributed datasets:a fault-tolerant abstraction for in-memory cluster computing[C] //Proc of the 9th USENIX Conference on Networked Systems Design and Implementation. 2012.
  • 7ENGLE C,LUPHER A,XIN R,et al. Shark:fast data analysis using coarse-grained distributed memory[C] //Proc of ACM SIGMOD International Conference on Management. 2012.
  • 8SHAO Bin,WANG Hai-xun,LI Ya-tao. Trinity:a distributed graph engine on a memory cloud[C] //Proc of ACM SIGMOD International Conference on Management of Data. 2013.
  • 9YIN Hong-zhi,CUI Bin,LI Jing,et al. Challenging the long tail recommendation[C] //Proc of Conference on Very Large Databases. 2012.
  • 10YAO Jun-jie,CUI Bin,HUANG Yu-xin,et al. Bursty event detection from collaborative tag[J].World Wide Web Journal,2012,15(2):171-195.

共引文献8

同被引文献19

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部