期刊文献+

基于随机游走和混合高斯模型的运动目标检测 被引量:1

Moving Target Detection Based on Random Walk and Gaussian Mixture Model
下载PDF
导出
摘要 针对传统的混合高斯背景建模算法未考虑同一帧内相邻像素之间的联系而导致无法准确地捕捉到运动物体轮廓的问题,提出了一种将随机游走和混合高斯模型相结合的前景目标检测算法。该算法利用混合高斯模型对视频源图像进行背景建模,从而获得初始运动目标,应用随机游走算法的分割效果及处理时间来确定种子点数量,结合初始运动目标对种子点进行标记,采用随机游走算法对视频源图像进行分割,将所得到的分割目标再与初始运动目标进行"与"运算,通过形态学处理得到作为结果的运动目标。为验证所提出算法的有效性,基于Matlab对所选取的4段视频进行了仿真检测。验证实验结果表明,所提出的前景目标检测算法较好地解决了混合高斯算法所产生的边缘模糊问题,同时也明显降低了前景噪声。 Since the conventional Gaussian mixture background modeling algorithm does not consider the correlation between adjacent pixels in the same frame, which cannot accurately capture the contour of moving objects, a foreground target detection method combined with random walk and Gaussian mixture model has been proposed. The background of the video source image has been modeled with the mixed Gauss model firstly, and the initial moving object has been obtained. Then, the number of seed points is determined by analyzing the segmentation result and the processing time of the random walk algorithm. The seed points have been labeled with the initial moving object, and the video source image is segmented by random walk algorithm. The obtained segmentation target and the initial moving ob- ject have been computed with logic AND operation. The morphological processing has been carried out to get the final moving target. In order to verify the effectiveness of the proposed algorithm, the four selected sequences of videos have been tested by Matlab. The test re- suits show that the proposed method has solved the edge blurring problem of Ganssian mixture algorithm, and reduced the foreground noise.
出处 《计算机技术与发展》 2017年第6期11-16,共6页 Computer Technology and Development
基金 上海市科技成果转化和产业化项目基金(14DZ1100600)
关键词 混合高斯模型 随机游走 运动目标检测 种子点 mixed Gauss model random walk moving target detection seed points
  • 相关文献

参考文献4

二级参考文献49

  • 1王超,侯丽敏.一种新的高斯混合模型参数估计算法[J].上海大学学报(自然科学版),2005,11(5):475-480. 被引量:3
  • 2于跃龙,卢焕章.基于背景构造的视频对象分割技术[J].计算机工程与科学,2006,28(1):36-38. 被引量:4
  • 3郭永涛,宋焕生,贺昱曜.视频交通监控系统中背景提取算法[J].电视技术,2006,30(5):91-93. 被引量:15
  • 4孟凤,王成儒.多模态背景下快速运动目标检测的研究[J].电子测量技术,2007,30(6):33-35. 被引量:3
  • 5Wren C R, Azarbayejani A, Darrell T, et al. Pfinder: Real-time of the human body[J]. IEEE Transactions on PAMI, 1997, 19(7) : 780 -785.
  • 6Friedman N, Russell S. Image segmentation in video sequences: A probabilistic approach [ A ]. In: Proceedings Thirteenth Conference on Uncertainty in Artificial Intelligence [ C ], Providence, Rhode Island, USA, 1997:175 - 181.
  • 7Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [ A ] Computer Vision and In: Proceedings of IEEE Pattern Recognition [ C ] Conference on Fort Collins,Colorado, USA, 1999:246-252.
  • 8Stauffer C, Grimson W E L. Learning patterns of activity using realtime tracking[ J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2000, 22 ( 8 ) :747 - 757.
  • 9Zoran Zivkovic. Improved adaptive Gaussian mixture model for background subtraction [ A ]. In: Proceedings of the International Conference on Pattern Recognition [ C ], Amsterdam, Netherlands, 2004:23 - 26.
  • 10KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for realtime tracking with shadow detection [ A ]. In : Proceedings of 2nd European Workshop on Advanced Video Based Surveillance System (AVBSO1) [ C ], Kingston, UK: Kluwer Academic Publishers, 2001 : 1 - 5.

共引文献58

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部