期刊文献+

平滑L0算法在语音压缩重构中的应用

Application of Smoothed L0 Algorithm in Compressed Sensing Reconstruction of Speech Signal
下载PDF
导出
摘要 语音信号在频域和离散余弦变换域等都具有良好的稀疏特性,满足压缩感知的先验条件,因此可以基于压缩感知对语音信号进行处理。语音压缩感知主要包括三个方面:稀疏基、观测矩阵和重构算法。其中,重构算法直接影响着重构信号的质量,是最重要的一部分。传统的语音压缩感知常基于正交匹配追踪算法进行重构。正交匹配追踪算法要求已知信号稀疏度,增加了实现的难度。为了提高语音信号的重构质量、简化实现过程,提出了一种基于平滑L0算法的语音压缩重构模型。平滑L0算法是用平滑函数逼近L0范数,它不需要提前知道信号的稀疏度,具有计算量低、重构质量高等优点。此外,提出了一种新的平滑函数,并基于高斯函数和新的平滑函数来验证平滑L0算法在语音压缩重构中的优越性。实验结果表明,在相同的条件下,相比于正交匹配追踪算法,使用平滑L0算法对语音进行重构,不仅缩短了重构时间,而且大大提高了重构质量。 At present,speech signals have good sparsities in domains like frequency and Discrete Cosine Transformation (DCT) and so on,which satisfies the prerequisite for Compressed Sensing (CS). Therefore,it can be treated by CS theory,which consists of sparse rep- resentation of the signal,design of the measurement matrix and the algorithms of reconstruction. Among them,the most important part is reconstruction algorithms which can influence the quality of reconstructed signals directly. The traditional compressed sensing reconstruc- tion of speech is usually based on Orthogonal Matching Pursuit (OMP) method. The orthogonal matching pursuit method needs to obtain sparse priors of the speech signal in advance, which makes the realization difficult. In order to improve the reconstruction quality of speech signal and simplify the implementation process, a compressed speech' s reconstruction method based on Smoothed L0 (SL0) algorithm has been proposed,in which the SL0 uses smooth function to approximate L0 norm without acquisition of sparse priors of the speech sig- nal in advance and with advantages of lower calculation capacity and higher quality of reconstruction. In addition, a new smooth function has been proposed. Ganssian function and the new smooth function are used to confirm the performance of the SLO. Simulation results demonstrate that the SLO algorithm has not only obtained a higher quality of reconstruction than the traditional OMP method, but also shorten the implementation time.
出处 《计算机技术与发展》 2017年第6期160-164,168,共6页 Computer Technology and Development
基金 国家自然科学基金资助项目(61271335) 江苏省自然科学基金项目(BK20140891) 南京邮电大学校科研基金项目(NY214038)
关键词 压缩感知 语音重构 重构算法 平滑L0算法 平滑函数 L0范数 compressed sensing speech reconstruction algorithms of reconstruction smoothed LO algorithm smooth function LO norm
  • 相关文献

参考文献5

二级参考文献57

  • 1杜振洲,周付根.基于帧间去相关的超光谱图像压缩方法[J].红外与激光工程,2004,33(6):642-645. 被引量:8
  • 2Donoho D L. Compressed sensing [ J]. IEEE Trans. on Information Theory, 2006, 52(4) :1289-1306.
  • 3Baraniuk R G.. Compressive sensing [ Lecture Notes ] [ J ]. IEEE Signal Processing Magazine, 2007, 24 (4) : 118- 121.
  • 4Donoho D, Tsaig Y. Extensions of compressed sensing [J]. Signal Processing, 2006, 86(3) : 533-548.
  • 5Gemmeke J F, Cranen B. Using sparse representations for missing data imputation in noise robust speech recognition [ C ]. European Signal Processing Conf. ( EUSIPCO ), Lausanne, Switzerland, August 2005.
  • 6Grifl-n A, Tsakalides P. Compressed sensing of audio signals using multiple sensors [ C]. in Proc. 16th European Signal Processing Conference ( EUSIPCO'08 ), Lausanne, Switzerland, 2008.
  • 7Giacobello D, Christensen M G, Muahi M N, Jensen S H, Moonen M. Retrieving sparse patterns using a compressed sensing framework: applications to speech coding based on sparse linear prediction [ J ]. Signal Processing Letters, IEEE, 2010, 17 ( 1 ) : 103-106.
  • 8Xu T T, Yang Z, Shao X. Novel speech secure communication system based on information hiding and compressed sensing [ C ]. Systems and networks communications, 2009. ICSNC'09. Fourth International Conference, 2009: 201-206.
  • 9Scott S. Chen, David L. Donoho, Michael A. Saunders. Atomic decomposition by basis pursuit [ J ]. SIAM Journal on Scientific Computing, 1998, 20( 1): 33-61.
  • 10Blumensath T, Davies M E. Gradient pursuits [ J ]. IEEE Trans. on Signal Processing, 2008,56(6) :2370-2382.

共引文献222

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部