期刊文献+

基于线性判别分析的室内声源定位方法 被引量:1

Indoor Acoustic Source Localization Method with LDA
下载PDF
导出
摘要 在小信噪比和混响时间较长的恶劣环境下,基于模式分类的手段能够有效克服传统的声源定位算法鲁棒能力不足的缺点,其中朴素贝叶斯分类器定位的准确率高,计算量小,鲁棒能力强。在此基础上,为了获得更好的定位性能,提出使用线性判别分析(LDA)分类器进行声源定位。使用Matlab进行仿真,截取声源信号的相位变换加权广义互相关函数(PHAT-GCC)作为特征向量,通过投影变换,找到最佳的特征空间来区分特征数据,从而训练得到线性判别分析分类器。然后在不同的混响时间和信噪比的条件下,进行定位测试,比较了线性判别分析分类器和朴素贝叶斯分类器的性能。仿真结果表明,在环境恶劣场合更宜使用线性判别分析分类器,特别是混响严重时,线性判别分析分类器的定位准确率比朴素贝叶斯分类器高1%~2%。 The method based on pattern classification can overcome the deficiency of traditional acoustic source localization algorithms which has an insufficient robust ability in the harsh environment of small SNR and severe reverberation. Among them, Naive Bayes classi- fier has high location accuracy with a small amount of calculation and strong robustness. In order to achieve better localization perform- ance ,Linear Discriminant Analysis (LDA) classifier is adopted to locate acoustic source on the basis of former research. It has been test- ed by Matlab,while the Phase Transform Generalized Cross-Correlation (PHAT-GCC) function would be used as feature vector. LDA classifier has been trained through projection transformation which could help to find a better feature space to discriminate the feature da- ta. Subsequently, the source would be located in different reverberation and noisy conditions to compare the performance with LDA classi- fier and Naive Bayes classifier. The simulation results have demonstrated that LDA classifier is a better choice in harsh environment and that the location accuracy of LDA classifier is higher than that of Naive Bayes classifier by 1% to 2%, especially in severe reverberation environment.
作者 杨悦 顾晓瑜
出处 《计算机技术与发展》 2017年第6期187-190,194,共5页 Computer Technology and Development
基金 江苏省自然科学基金(BK20140891) 声纳技术国防科技重点实验室开放研究基金(KF201503)
关键词 声源定位 相位变换加权广义互相关函数 LDA分类器 朴素贝叶斯分类器 acoustic localization PHAT-GCC LDA classifier Naive Bayes classifier
  • 相关文献

参考文献8

二级参考文献108

  • 1王冰,栾锋,刘满仓,胡之德.基于线性判别式和支撑向量机的肾结石分类方法[J].兰州大学学报(自然科学版),2006,42(2):77-80. 被引量:6
  • 2姜斌,黎湘,王宏强,郭桂蓉.模式分类方法研究[J].系统工程与电子技术,2007,29(1):99-102. 被引量:6
  • 3刘红秀,骆德汉,张泽勇.机器嗅觉系统气味识别算法[J].传感技术学报,2006,19(6):2518-2522. 被引量:4
  • 4Zhao W, Chellappa R, Phillips P J, et al. Face Recognition : A Literature Survey. ACM Computing Surveys, 2003, 35 (4) : 399 - 458
  • 5Yi J, Kim J, Choi J, et al. Face Recognition Based on ICA Combined with FLD//Proc of the 7th European Conference on Computer Vision. Copenhagen, Denmark, 2002 : 10 - 18
  • 6Bartlett M S, Movellan J R, Sejnowski T J. Face Recognition by Independent Component Analysis. IEEE Trans on Neural Networks, 2002, 13(6) : 1450 -1464
  • 7Lu Juwei, Plataniotis K N, Venetsanopoulos A N. Face Recognition Using LDA-Based Algorithms. IEEE Trans on Neural Networks, 2003, 14(1): 195-200
  • 8Delac K, Grgic M, Grgic S. Statistics in Face Recognition: Analyzing Probability Distributions of PCA, ICA and LDA Performance Results// Proc of the 4th International Symposium on Image and Signal Processing and Analysis. Zagreb, Croatia, 2005:289 -294
  • 9Yang Jian, Yang Jingyu. Why Can LDA Be Performed in PCA Transformed Space? Pattern Recognition, 2003, 36 ( 2 ) : 563 - 566
  • 10Keller J M, Gray M R, Givens J R. A Fuzzy k -Nearest Neighbor Algorithm. IEEE Trans on Systems, Man and Cybernetics, 1985,15 (4) : 580 -585

共引文献137

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部