期刊文献+

无穷个m增生映射和逆强增生映射的隐式单调投影算法与p-Laplacian系统 被引量:1

Implicit monotone projection scheme for infinite m-accretive mappings and inversely strongly accretive mappings and p-Laplacian systems
下载PDF
导出
摘要 首先在Hilbert空间中,设计了带误差项的隐式单调投影迭代算法,证明了迭代序列强收敛到无穷个非线性m增生映射与逆强增生映射和的公共零点的结论,将以往的相关研究成果从有限个映射的情形推广到无穷个;其次采用分裂法将一类p-Laplacian型抛物系统转化成算子方程的形式,证明了p-Laplacian型抛物系统非平凡解的存在性并建立了非平凡解与无穷个m增生映射与逆强增生映射和的公共零点的关系;最后构造了p-Laplacian型抛物系统非平凡解的迭代逼近序列,推广和补充了以往的相关研究成果. In the paper, an implicit monotone projection iterative scheme with errors is designed in Hilbert spaces. The iterative sequence is proved to be strongly convergent to the common zero of the sum of infinite family of m-accretive mappings and inversely strongly accretive mappings, which extends the previous corresponding studies from the finite cases to infinite ones. Secondly, by using splitting methods, one kind of p-Laplacian-like parabolic systems is converted to operator equations. The existence of the non-trivial solution of the p-Laplacian-like parabolic systems is obtained and the relationship between the non-trivial solution and the common zero of the sum of infinite m-accretive mappings and inversely strongly accretive mappings is being set-up. Finally, the iterative approximate sequence of the non-trivial solution of the p-Laplacian-like parabolic systems is constructed. The work done in this paper extends and complements some previous corresponding work.
作者 魏利 张雅南 WEI Li ZHANG Ya-nan(School of Mathematics and Statistics, Hebei University of Economics and Business, Shijiazhuang 050061, China)
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2017年第2期229-240,共12页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(11071053) 河北省自然科学基金(A2014207010) 河北省教育厅科研重大项目(ZD2016024) 河北经贸大学科研重点项目(2016KYZ07)
关键词 p-Laplacian型抛物系统 m增生映射 逆强增生映射 非平凡解 隐式单调投 影迭代算法 p-Laplacian-like parabolic systems m-accretive mapping inversely strongly map-ping non-trivial solution implicit monotone projection iterative scheme
  • 相关文献

参考文献2

二级参考文献16

  • 1WEI Li (School of Mathematics and Statistics, Hebei University of Economics and Business, Shijiazhuang 050061, China,Institute of Applied Mathematics and Mechanics, Ordnance Engineering College, Shijiazhuang 050003, China. ZHOU Haiyun (Institute of Applied Mathematics and Mechanics, Ordnance Engineering College, Shijiazhuang 050003, China,Institute of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050016, China..THE EXISTENCE OF SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS INVOLVING THE p-LAPLACIAN OPERATOR IN L^s-SPACES[J].Journal of Systems Science & Complexity,2005,18(4):511-521. 被引量:17
  • 2Pascali D, Sburlan S. Nonlinear Mappings of Monotone Type[M]. Romania: Sijthoff and Noordhoff International Publishers, 1978.
  • 3Baxbu V. Nonlinear Semigroups and Differential Equations in Banach Spaces[M]. The Netherlands: Noordhoff International Publishers, 1976.
  • 4Zeidler E. Nonlinear Functional Analysis and Its Applications(IIA)[M]. New York: Springer- Verlag, 1990.
  • 5Takahashi W. Nonlinear Functional Analysis[M]. Yokohama: Yokohama Publishers, 2000.
  • 6Takahashi W. Proximal point algorithms and four resolvents of nonlinear operators of mono- tone type in Banach spaces[J]. Taiwan Residents J Math, 2008,12(8): 1883-1910.
  • 7Kamimura S, Takahashi W. Strong convergence of a proximal-type algorithm in a Banach space[J]. SIAM J Optim, 2003, 13(3): 938-945.
  • 8Wei Li, Ravi P Agarwal. Existence of solutions to nonlinear Neumann boundary value problems with generalized p-Laplacian operator[J]. Comput Math Appl, 2008, 56: 530-541.
  • 9Wei Li, Ravi P Agarwal, Wong P J Y. Results on the existence of solution of p-Laplacian-like equation[J]. Adv Math Sci Appli, 2013, 23(1): 153-167.
  • 10wei Li, Ravi P Agarwal. Nonlinear boundary value problems with generalized p- Laplacian,ranges of m-accretive mappings and iterative schemes[J]. Appl Anal, 2014, 56: 530-541.

共引文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部