期刊文献+

SNOWY COTYLEDON 2 Promotes Chloroplast Development and Has a Role in Leaf Variegation in Both Lotus japonicus and Arabidopsis thaliana 被引量:3

SNOWY COTYLEDON 2 Promotes Chloroplast Development and Has a Role in Leaf Variegation in Both Lotus japonicus and Arabidopsis thaliana
原文传递
导出
摘要 Plants contain various factors that transiently interact with subunits or intermediates of the thylakoid multiprotein complexes, promoting their stable association and integration. Hence, assembly factors are essential for chloroplast development and the transition from heterotrophic to phototrophic growth. Snowy cotyledon 2 (SCO2) is a DNAJ-like protein involved in thylakoid membrane biogenesis and interacts with the light-harvesting chlorophyll-binding protein LHCBI. In Arabidopsis thaliana, SCO2 function was previ- ously reported to be restricted to cotyledons. Here we show that disruption of SC02 in Lotus japonicus results not only in paler cotyledons but also in variegated true leaves. Furthermore, smaller and pale- green true leaves can also be observed in A. thaliana sco2 (atsco2) mutants under short-day conditions. In both species, SCO2 is required for proper accumulation of PSlI-LHCll complexes. In contrast to other variegated mutants, inhibition of chloroplastic translation strongly affects L. japonicus sco2 mutant devel- opment and fails to suppress their variegated phenotype. Moreover, inactivation of the suppressor of variegation AtClpR1 in the atsco2 background results in an additive double-mutant phenotype with variegated true leaves. Taken together, our results indicate that SCO2 plays a distinct role in PSll assembly or repair and constitutes a novel factor involved in leaf variegation. Plants contain various factors that transiently interact with subunits or intermediates of the thylakoid multiprotein complexes, promoting their stable association and integration. Hence, assembly factors are essential for chloroplast development and the transition from heterotrophic to phototrophic growth. Snowy cotyledon 2 (SCO2) is a DNAJ-like protein involved in thylakoid membrane biogenesis and interacts with the light-harvesting chlorophyll-binding protein LHCBI. In Arabidopsis thaliana, SCO2 function was previ- ously reported to be restricted to cotyledons. Here we show that disruption of SC02 in Lotus japonicus results not only in paler cotyledons but also in variegated true leaves. Furthermore, smaller and pale- green true leaves can also be observed in A. thaliana sco2 (atsco2) mutants under short-day conditions. In both species, SCO2 is required for proper accumulation of PSlI-LHCll complexes. In contrast to other variegated mutants, inhibition of chloroplastic translation strongly affects L. japonicus sco2 mutant devel- opment and fails to suppress their variegated phenotype. Moreover, inactivation of the suppressor of variegation AtClpR1 in the atsco2 background results in an additive double-mutant phenotype with variegated true leaves. Taken together, our results indicate that SCO2 plays a distinct role in PSll assembly or repair and constitutes a novel factor involved in leaf variegation.
出处 《Molecular Plant》 SCIE CAS CSCD 2017年第5期721-734,共14页 分子植物(英文版)
关键词 SCO2 DNAJ-like PHOTOSYNTHESIS assembly factor VARIEGATION chloroplast development SCO2, DNAJ-like, photosynthesis, assembly factor, variegation, chloroplast development
  • 相关文献

参考文献1

二级参考文献88

  • 1Adam Z,Adamska I,Nakabayashi K,Ostersetzer O,Haussuhl K,Manuell A,Zheng B,Vallon O,Rodermel SR,Shinozaki K,Clarke AK(2001)Chloroplast and mitochondrial proteeses in Arabidopsis.A proposed nomenclature.Plant Physiol.125,1912-1918.
  • 2Adam Z,Rudella A,van Wijk K(2006)Recent advances in the study of Clp,FtsH and other proteases located in chloroplasts.Curr.Opin.Plant Biol.9,234-240.
  • 3Akiyama Y,Yoshihisa T,Ito K(1995)FtsH,a membrane-bound ATPase,forms a complex in the cytoplasmic membrane of Escherichia coli.J.Biol.Chem.270,23485-23490.
  • 4Albrecht V,Ingenfeld A,Apel K(2006)Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana:the impact of chloroplast elongation factor G on chloroplast development and plant vitality.Plant Mol.Biol.60,507-518.
  • 5Aro EM,Suorsa M,Rokka A,Allahverdiyeva Y,Paakkarinen V,Saleem A,Battchikova N,Rintam(a)ki E(2005)Dynamics of photosystem Ⅱ:a proteomic approach to thylakoid protein complexes.J.Exp.Bot.56,347-356.
  • 6Bailey S,Thompson E,Nlxon PJ,Horton P,Mullineaux CW,Robinson C,Mann NH(2002)A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem Ⅱ repair cycle in vivo.J.Biol.Chem.277,2006-2011.
  • 7Barker M,de Vries R,Nield J,Komenda J,Nixon PJ(2006).The DEG proteases protect Synechocystis sp.PCC 6803 during heat and light stresses but are not essential for removal of damaged D1 protein during the photosystem two repair cycle.J.Biol.Chem.281,30347-30355.
  • 8Beyer A(1997)Sequence analysis of the AAA protein family.Protein Sci.6,2043-2058.
  • 9Bieniossek C,Schalch T,Bumann M,Meister M,Meier R,Baumann U(2006)The molecular architecture of the metalloprotease FtsH.Proc.Natl.Acad.Sci.USA 103,3066-3071.
  • 10Chen J,Burke JJ,Velten J,Xin Z(2006)FtsH11 protease plays a critical role in Arabidopsis thermotoleranca.Plant J.48,73-84.

共引文献13

同被引文献14

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部