期刊文献+

An adaptive neuro-fuzzy sliding mode controller for MIMO systems with disturbance 被引量:1

An adaptive neuro-fuzzy sliding mode controller for MIMO systems with disturbance
下载PDF
导出
摘要 This paper introduces the mathematical model of ammonia and urea reactors and suggested three methods for designing a special purpose controller. The first proposed method is Adaptive model predictive controller, the second is Adaptive Neural Network Model Predictive Control, and the third is Adaptive neuro-fuzzy sliding mode controller. These methods are applied to a multivariable nonlinear system as an ammonia–urea reactor system. The main target of these controllers is to achieve stabilization of the outlet concentration of ammonia and urea, a stable reaction rate, an increase in the conversion of carbon monoxide(CO) into carbon dioxide(CO_2) to reduce the pollution effect, and an increase in the ammonia and urea productions, keeping the NH_3/CO_2 ratio equal to 3 to reduce the unreacted CO_2 and NH_3, and the two reactors' temperature in the suitable operating ranges due to the change in reactor parameters or external disturbance. Simulation results of the three controllers are compared. Comparative analysis proves the effectiveness of the suggested Adaptive neurofuzzy sliding mode controller than the two other controllers according to external disturbance and the change of parameters. Moreover, the suggested methods when compared with other controllers in the literature show great success in overcoming the external disturbance and the change of parameters. This paper introduces the mathematical model of ammonia and urea reactors and suggested three methods for designing a special purpose controller. The first proposed method is Adaptive model predictive controller, the second is Adaptive Neural Network Model Predictive Control, and the third is Adaptive neuro-fuzzy sliding mode controller. These methods are applied to a multivariable nonlinear system as an ammonia–urea reactor system. The main target of these controllers is to achieve stabilization of the outlet concentration of ammonia and urea, a stable reaction rate, an increase in the conversion of carbon monoxide(CO) into carbon dioxide(CO2) to reduce the pollution effect, and an increase in the ammonia and urea productions, keeping the NH3/CO2 ratio equal to 3 to reduce the unreacted CO2 and NH3, and the two reactors' temperature in the suitable operating ranges due to the change in reactor parameters or external disturbance. Simulation results of the three controllers are compared. Comparative analysis proves the effectiveness of the suggested Adaptive neurofuzzy sliding mode controller than the two other controllers according to external disturbance and the change of parameters. Moreover, the suggested methods when compared with other controllers in the literature show great success in overcoming the external disturbance and the change of parameters.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第4期463-476,共14页 中国化学工程学报(英文版)
关键词 氨反应堆 脲反应堆 处理控制 化学工业 适应模型预兆的控制器 适应神经网络模型预兆的控制 适应 neuro 模糊的滑动模式控制器 非线性 disturbance sliding ammonia stabilization outlet predictive monoxide dioxide overcome steam
  • 相关文献

同被引文献18

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部