期刊文献+

矿石入磨前处理工艺对其可磨性的影响 被引量:3

Influence of the Technology and Equipment of the Operation ahead of Grinding on the Grinding Performance of Ore
下载PDF
导出
摘要 为了研究矿石进入球磨机前的加工工艺对矿石可磨性的影响,以秘鲁某磁铁矿矿石为对象,进行Bond球磨功指数和相对可磨度试验。结果表明,在目标粒度106μm、74μm和45μm下,高压辊磨产品的Bond球磨功指数均比颚式破碎机产品低。而预磁选精矿的Bond球磨功指数则比高压辊磨产品都高,甚至高于颚式破碎机产品。球磨机选型时Bond球磨功指数的测定,须根据矿石进入球磨机前的处理工艺而定。在磨矿细度为-74μm 80%时,高压辊磨产品相对于颚式破碎机产品的相对可磨度为0.90,高压辊磨产品相对于预选精矿的相对可磨度为1.23。入磨前颚式破碎机破碎、高压辊磨破碎、高压辊磨加预磁选3种不同的处理工艺会导致后续矿石可磨性不同。 Taking a Peru magnetite ore as the sample, experiments of relative grind-ability and bond work index of ball mill were conducted in order to evaluate the effect of the technology and equipment of the operation ahead of the grinding operation on subsequent grinding performance of ore. The results showed that when the target size of 106,74 and 45μm, the Bond work index of HPGR products was lower than that of the jaw crusher, but the Bond work index of pre-separating concentrates was higher than that of HPGR products, even higher than the jaw crusher products. When Bond ball mill work index was used to mill determine, the effect of the technology and equipment of the operation ahead of the grinding operation should be considered. With regrinding fineness of-74 μm 80%, the rel- ative grind-ability of HPGR and JC product reached 0. 90, the relative grind-ability of HPGR and pre-separating concentrates reached 1.23. The technology and equipment of jaw crusher, HPGR, and HPGR with pre-separating ahead of grinding, would lead to different performance of Ore.
出处 《矿产综合利用》 北大核心 2017年第3期58-61,共4页 Multipurpose Utilization of Mineral Resources
关键词 高压辊磨机 颚式破碎 预磁选 Bond球磨功指数 相对可磨度 High pressure roller mill Jaw crusher Pre-separating process Bond ball mill work index Relative grindability
  • 相关文献

参考文献2

二级参考文献18

  • 1李开文.论我国地浸采铀技术的重大突破——新疆地浸采铀矿床的成功应用[J].中国矿业,2005,14(3):1-8. 被引量:8
  • 2贾增良,谭玉林,王训艳,永琪.大块干选磁滑轮在鑫丰铁矿的应用[J].矿山机械,2006,34(1):80-80. 被引量:2
  • 3胡天喜,文书明,陈名洁,李振飞.我国尾矿综合利用的一些进展[J].矿山机械,2006,34(4):63-65. 被引量:6
  • 4Wills B A, Napier-Munn T. Grinding mills[M]. 7th ed. Oxford: Wills' Mineral Processing Technology, 2005.
  • 5Torres M, Casali A. A novel approach for the modelling of high-pressure grinding rolls [ J ]. Minerals Engineering, 2009,22:1137-1146.
  • 6Namik A A, Levent E, Hakan B. High pressure grinding rolls (HPGR) applications in the cement indusrty[J]. Minerals Engineering, 2006,19:130-139.
  • 7Hilden M, Suthers S. Comparing energy efficiency of multipass high pressure grinding roll (HPGR) circuits [C]//XXV IMPC. Brisbane, 2010 : 801 - 811.
  • 8Fuerstenau D W, Kapur P C. Comminution of minerals in a laboratory-size, choke-fed high-pressure roll mills [C]// Proceedings of the 18th International Mineral Processing Congress. Sydney, 1993 : 175 - 180.
  • 9Lim I L, Voigt W, Weller K R. Product size distribution and energy expenditure in grinding minerals and ores in high pressure rolls [J]. International Journal of Mineral Prcessing, 1996,44/45 : 539 - 559.
  • 10魏德州.固体物料分选学[M].2版.北京:冶金工业出版社,2009:26-29.

共引文献36

同被引文献32

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部