期刊文献+

一种基于最小1-范数准则的TDOA估计算法

An Estimation Algorithm of TDOA Based on Least 1-Norm Criterion
下载PDF
导出
摘要 针对脉冲噪声条件下利用传统广义互相关法(Generalized Cross-Correlation,GCC)进行时延(TDOA,Time Difference of Arrival)估计性能退化问题,提出一种基于最小1-范数准则的TDOA参数估计算法。对于高斯噪声,传统GCC估计方法能够实现统计最优,但当噪声的统计分布为非高斯分布时,利用传统GCC参数估计方法的估计精度和鲁棒性急剧下降。利用最小1-范数准则,提出一种存在α-稳定分布重尾脉冲噪声环境下的TDOA估计算法。系统仿真实验与结果分析表明,与传统GCC方法和分数低阶矩(Fractional Lower Order Moments,FLOM)方法相比,该算法在鲁棒性和估计精度方面均有明显改善。 To solve the problem of the performance degradation of TDOA ( Time Difference of Ar- rival) estimation using generalized cross-correlation (GCC) method under impulsive noise con- ditions,an estimation algorithm of TDOA based on least 1-norm criterion is proposed. For the Gaussian noise, the traditional GCC estimation method can achieve statistical optimization, but when the statistical distribution of noise is non-Gaussian distribution, the performance of the tra- ditional GCC method decreases drastically in the estimation accuracy and robustness. The con- cept of 1-correlation function is given by using the minimum 1-norm criterion, and a TDOA esti- mation algorithm with oL-stable distribution noise of heavy-tailed distribution is proposed. Simu- lation results of the system model show that the performance of the proposed algorithm is better than that of the traditional GCC method and fractional lower order moments (FLOM) method in terms of robustness and estimation accuracy.
出处 《电子信息对抗技术》 2017年第3期9-12,66,共5页 Electronic Information Warfare Technology
基金 国家自然科学基金(61501513)
关键词 脉冲噪声 广义互相关 参数估计 α-稳定分布 分数低阶矩 impulse noise generalized cross-correlation parameter estimation α-stable distri- bution fractional lower order moments
  • 相关文献

参考文献1

二级参考文献14

  • 1Blake C L, Merz C J. UCI Repository of Machine Learning Databases [EB/OL]. (2006-3) [2007-4]. http;//archive.ics.uci.edu/ml/, 2007.
  • 2G Ratsch, T Onoda, K-R Muller. Soft Margins for AdaBoost [J]. Machine Learning (S0885-6125), 2001, 42(3): 287-320.
  • 3QING Tao, JUE Wang. A New Fuzzy Support Vector Machine Based on the Weighted Margin [J]. Neural Procession Letters (S1370-4621), 2004, 20(3): 139-150.
  • 4A J Smola, B SchAolkopf, K-R MAuller. The Connection Between Regularization Operators and Support Vector Kernels [J]. Neural Networks (S0893-6080), 1998, 11 (4): 637-649.
  • 5Kuncheva L I. How Good Are Fuzzy If-Then Classifiers? [J] IEEE Transactions on Systems, Man, and Cybernetics (S1083-4419), 2000, 30(4): 561-509.
  • 6V Vapnik. Statistical l_earning Theory [M]. New York: John Wiley & Sons Inc., 1998: 116-200.
  • 7D Nauck, R Kruse. A Neuro-Fuzzy Method to Learn Fuzzy Classification Rules from Data [J].Fuzzy Sets and Systems (S0165-0114), 1997, 89(3): 277-288.
  • 8Shinn-Ying Ho, Chia-Cheng Liu, Soundy Liu. Design of an Optimal Nearest Neighbor Classifier Using an Intelligent Genetic Algorithm [J]. Pattern Recognition Letters (S0167-8655), 2002, 23(13): 1495-1503.
  • 9M Ryoke, H Taraara, Y Nakaraori. Fuzzy Rule Generation by Hyperellipsoidal Clustering [C]// Methodologies for the Conception, Design and Application of intelligent System. New Jersey: World Scientific, 1996: 86-89.
  • 10L Junco, L Sanchez. Using the Adaboost Algorithm to Induce Fuzzy Rules in Classification Problems [C]//Proc. Spanish Conference for Fuzzy Logic and Technologies. Sevilla: J. Vascak, 2000: 297-301.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部