期刊文献+

一类奇摄动双曲型非线性积分-微分系统

A class of singularly perturbed hyperbolic nonlinear integral-differential system
下载PDF
导出
摘要 本文研究了一类两参数双曲型非线性积分-微分奇摄动系统.首先利用Fredholm型积分方程,得到了系统的外部解;然后用多重尺度变量方法得到了系统的边界层校正项,再利用伸长变量方法得到了系统的初始层校正项;最后由不动点理论证明了奇摄动解的合成渐近展开式的一致有效性. A class of singularly perturbed system for the hyperbolic nonlinear integraldifferential system is considered. Firstly, the outer solution to system is obtained by employing the Fredholm type integral equation. Then the boundary layer corrective term is constructed using the variables of multiple scales method. And the initial layer corrective term is found via the stretched variable method. Finally, from the fixed point theory, the uniformly valid behavior for the composed asymptotic expansion of singular perturbation solution is proved.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第3期39-47,共9页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(11202106) 安徽省教育厅自然科学重点基金(KJ2015A347 KJ2017A702) 安徽省高校优秀青年人才支持计划重点项目(gxyqZD2016520) 亳州学院科学研究项目(BSKY201431)
关键词 积分-微分方程 奇摄动 双曲型方程 integral-differential equation singular perturbation hyperbolic type equation
  • 相关文献

参考文献2

二级参考文献21

  • 1薛红.随机利率情形下的多维Black-Scholes模型[J].工程数学学报,2005,22(4):645-652. 被引量:12
  • 2Cont R, Tankov P. Financial Modelling with Jump Processes [M]. Chapman and Hall, London, 2004.
  • 3Sehoutens W. Levy Processes in Finance: Pricing Financial Derivatives[M]. Wiley, New York, 2003.
  • 4Ball C, Torous W. On Jumps in Common Stock Prices and their Impact on Call Option Pricing[J]. Finance, 1995, 40:155 - 173.
  • 5Corcuera J M, Nnalart D, Schoutens W. Completion of a Levy Market by Power - Jump Assets [ J ]. Finance Stochast. , 2005, 9:109 - 127.
  • 6Lueiano E, Sehoutens W. A Multivariate Jump - Driven Financial Asset Model[J]. Quantitative Finance, 2006, 6(5) : 385 -402.
  • 7Elliott R J, Hoek J. A General Fractional White Noise Theory and Applications to Finance [ J ]. Mathematical Finance, 2003, 13 (2) : 301 -330.
  • 8Benth F E. On Arbitrage - Free Pricing of Weather Derivatives based on Fractional Brewnian Motion [ J ]. Applied Mathematical Finance, 2003, 10 (4): 303-324.
  • 9Bjork T, Hult H. A Note on Wick Products and the Fractional Black- Scholes Model [ J]. Finance and Stochastics, 2005, 9 (2) : 197 -209.
  • 10Guasoni P. No Arbitrage under Transaction Costs, with Fractional Brownian Motion and Beyond[ J]. Mathematical Finance, 2006, 16(3) : 569 -582.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部