摘要
本文研究了一类两参数双曲型非线性积分-微分奇摄动系统.首先利用Fredholm型积分方程,得到了系统的外部解;然后用多重尺度变量方法得到了系统的边界层校正项,再利用伸长变量方法得到了系统的初始层校正项;最后由不动点理论证明了奇摄动解的合成渐近展开式的一致有效性.
A class of singularly perturbed system for the hyperbolic nonlinear integraldifferential system is considered. Firstly, the outer solution to system is obtained by employing the Fredholm type integral equation. Then the boundary layer corrective term is constructed using the variables of multiple scales method. And the initial layer corrective term is found via the stretched variable method. Finally, from the fixed point theory, the uniformly valid behavior for the composed asymptotic expansion of singular perturbation solution is proved.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第3期39-47,共9页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(11202106)
安徽省教育厅自然科学重点基金(KJ2015A347
KJ2017A702)
安徽省高校优秀青年人才支持计划重点项目(gxyqZD2016520)
亳州学院科学研究项目(BSKY201431)
关键词
积分-微分方程
奇摄动
双曲型方程
integral-differential equation
singular perturbation
hyperbolic type equation