期刊文献+

基于标签与评分个性化课程推荐算法 被引量:2

Personalized curriculum recommendation algorithm based on tags and ratings
下载PDF
导出
摘要 首先根据课程的标签对课程进行聚类,找到相似度高的课程;其次根据学生对课程的已有评价和课程的聚类结果对未选课程进行评分预测,构建无缺失的课程评价矩阵,在此基础上再次对课程进行相似度计算,找到相似度较高的K项向目标用户进行推荐。通过实验验证,本算法与基于标签协同过滤算法以及基于评分推荐算法相比,具有更准确的推荐效果。 Cluster analysis is carried out according to the tags of the curriculum to find the high similarity of courses.Then rating prediction for a course is completed based on the previous evaluation and cluster analysis,and the intact curriculum evaluation matrix is established.Again,similarity of the courses is calculated to find Kitems for recommendation to the target users.Experiments indicate that the algorithm is more accurate for recommendation than those based on tags or rating.
作者 古奋飞
出处 《长春工业大学学报》 CAS 2017年第2期198-203,共6页 Journal of Changchun University of Technology
基金 安徽省重点研究项目(kj2016A303) 安徽新华学院自然科学研究项目(2015zr008) 安徽新华学院质量工程项目(2015sysxs01)
关键词 标签 评分 课程推荐 聚类 tag rating course recommendation cluster
  • 相关文献

参考文献2

二级参考文献30

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave an information Tapestry[J]. Communications of the ACM,1992,35(12):61-70.
  • 3Resnick P, Iacovou N, Suchak M, et al. GroupLens: An open architecture for collaborative filtering of netnews[C]//Proc, of the ACM CSCW' 94 Conf. on Computer Supported Cooperative Work. Chapel Hill:ACM, 1994:175-186.
  • 4Shardanand U,Mages'P. Social information filtering:Algorithms for automating "Word of Mouth"[C]//Proc. of the ACM CHI' 95 Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995:210-217.
  • 5Hill M, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use[C]//Proc, of the ACM CHI'95 Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995 : 194-201.
  • 6Claypool M, Gokhale A, Miranda T, et al. Combining contentbased and collaborative filters in an online newspaper [C]// ACM SIGIR' 99 Workshop on Recommender Systems: Algorithms and Evaluation. Berkeley: ACM, 1999.
  • 7Linden G, Smith B, York J. Amazon. com recommendations: Itern-to-item collaborative filtering[J]. IEEE Internet Computing,2003,7(1) :76-80.
  • 8Holmquist L E,Jacobsson M, Rost M. When media gets wise: Collaborative filtering with mobile media agents [C]//Proc. of the IUI 2006, the 10^th Int'l Conf. on Intelligent User Interfaces. Sydney. http://portal. acm.org/, 2006.
  • 9Park S T, Pennock D M. Applying collaborative filtering techniques to movie search for better ranking and browsing[C]// Proc. of the 13th ACM SIGKDD International Conf. on Knowledge Discovery and Data Mining. New York: ACM, 2007 : 550- 559.
  • 10Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms [C]//Proc. of 10^th Int'l World Wide Web Conf. New York: ACM Press, 2001:285-295.

共引文献81

同被引文献18

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部