期刊文献+

Campanato函数与θ型积分算子的交换子有界性 被引量:2

Boundedness of Commutators with Campanato Function and θ-type Operators
下载PDF
导出
摘要 研究了交换子[b,T]在加权Morrey空间上的有界性。采用Sharp极大函数估计方法得到交换子[b,T]在加权Morrey空间Lp,k(ω)上的有界性,其中T是一个θ型奇异积分算子,函数b属于加权Campanato空间。 The boundedness of the commutator [b, T] was studied in the weighted Morrey space. When T are θ- type Calderon-Zygmund operators and b the weighted Campanato function, the commutator [b, T] is bounded on the weighted Morrey spaces by way of the maximal function estimation.
出处 《华东交通大学学报》 2017年第3期137-142,共6页 Journal of East China Jiaotong University
基金 国家自然科学基金资助项目(11661035)
关键词 θ型C-Z算子 加权空间 交换子 Campanato函数 θ-type Calder6n-Zygmund operators weighted spaces commutators Campanato functions
  • 相关文献

参考文献6

二级参考文献53

  • 1张璞,徐罕.Calderón-Zygmund型算子交换子的加权尖锐估计[J].数学学报(中文版),2005,48(4):625-636. 被引量:11
  • 2STEIN E M. On the function of Littlewood-paley, I.usin and Marcinkiewicz[J]. Trans Amer Math, 1958, 88:430-466.
  • 3BENEDEK A, CALDERON A, PANZONE R. Convolution operator on Banach space valued functions[J]. Proc Nat Acafl Sci USA, 1962,48:356-365.
  • 4DING Y, FAN D, PAN Y. L^P-boundedness of Marcinkiewicz integrals with Hardy space function kernels[J]. Acta Math Sinica: English Series, 2000,16:593- 600.
  • 5TORCHINSKY A, WANG S L. A note on the Marcinkiewicz integrals[J]. Colloq Math, 1990,60:235-243.
  • 6WANG Y S. Littlewood-paly g-operator on weighted Campanato spaces[J]. J of Henan Normal University: Natural Science, 1995,23:22-25.
  • 7DING Y, LU S Z, XUE Q Y. On Marcinkiewicz integral with homogeneous kernels[J]. J of Mathematical Analysis and Application, 2000,245 : 471-488.
  • 8WANG S L. Boundedness of the Littlewood-paly gfunction onLipn(R^n)(0<α<1) Ⅲ[J]. J Math, 1989, 33:531-541.
  • 9JIANG Li-ya. Boundedness of certain Marcinkiewicz integral operators on product spaces[J]. J of Zhejiang University: Science Edition, 2005,32(6) :611-615.
  • 10Garcia-Cuerva J. Weighted Hp spaces. Dissertations Math, 1979, 162:1-63.

共引文献11

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部