摘要
在纵向数据部分线性模型中,基于高斯伪似然构造相关阵的相合正定估计,进而得到回归参数的高效估计,给出了估计的算法及基于高斯伪似然的相关阵模型的选择准则.模拟表明,基于高斯伪似然方法得到的参数估计是高效的.
This paper propose the consistent and positive definite correlation matrix based on a Gaussian pseudo-likelihood method and obtain an efficient estimator of the regression parameters for partial linear models with longitudinal data. The estimation algorithm and the method for Gaussian pseudo-likelihood based selection of working covariance models were then given. Simulations show that the parameter estimation based on the Gauss pseudo-likelihood method is efficient.
出处
《吉林师范大学学报(自然科学版)》
2017年第2期68-73,共6页
Journal of Jilin Normal University:Natural Science Edition
基金
国家自然科学基金项目(11401048)
吉林省科技厅青年科研基金项目(20150520055JH)
关键词
高斯伪似然
工作相关阵
部分线性模型
模型选择
Gaussian pseudo-likelihood
working correlation matrices
partially linear model
model selection