期刊文献+

纳米ZnO的形貌、光致发光性质及反应气浓度分布的研究

A Study on the Morphology,Photoluminescence of Nanometer ZnO and Gas Concentration Distribution
下载PDF
导出
摘要 采用化学气相沉积的实验方法,以纯Zn粉为锌源,O_2为反应气,N_2为载气,在双管管式炉内制备了多脚结构的纳米ZnO,研究了载气流量对产物形貌和光致发光性能的影响;通过计算流体动力学软件FLUENT对实验条件下管式炉内O_2和Zn蒸汽的浓度分布进行了模拟。实验和模拟结果表明:随着N2流量的增大,O_2浓度减小,产物由钉状多脚结构向针状多脚结构转变;沉积位置处Zn蒸汽的浓度远大于O_2浓度,绿光发射峰主要是由ZnO纳米晶体氧空位引起的,沉积反应主要由O_2控制。 The author of this paper has prepared nanometer ZnO in the double tube furnace by chemical vapor deposition(CVD) , with pure zinc powder as a source of zinc, 02 as a reac-tion gas and N2 as a carrier gas, and studied the effect of carrier gas flow rate on the mor-phology and photoluminescence of the produced nanometer ZnO. The concentration distri-bution of 02 and Zn vapor was simulated with FLUENT. The experiment and simulation re-sults show th a t with the increase of N2 flow ra te , 02 concentration decreases, and the prod-ucts changes from the nail-like multi-foot s tructure to the needle-like multi-foot s t ruc ture; the concentration of Zn vapor at the deposition site is much larger than th a t of O2 , the green emission peak is caused mainly by the vacancy of ZnO nanocrystals, and the deposition reac-tion is controlled mainly by O2.
作者 田会娟
出处 《唐山学院学报》 2017年第3期27-30,44,共5页 Journal of Tangshan University
基金 唐山学院博士创新基金资助项目(tsxybc201404)
关键词 纳米氧化锌 浓度场 实验和模拟 双管管式炉 nanometer ZnO concentration f ield experiment and simulation double tube furnace
  • 相关文献

参考文献1

二级参考文献11

  • 1Fan D H, Zhang R, Wang X H. Synthesis and optical property of ZnO oanonail orrays with controllable morphology[J]. Physi- ca E,2010,42(8) =2081-2085.
  • 2Zhang Z,Yi J B, Ding J, et al. Cu-doped ZnO nanoneedles and nanonails= morphological evolution and physical properties[J]. J Phys Chem C,2008,112(26):9579-9585.
  • 3Wan H,Ruda H E. A study of the growth mechanism of CVI grown ZnO nanowires [ J ]. J Mater Sci, 2010, 21 ( 10 ) = 1014- 1019.
  • 4Subannajui K, Ramgir N, Grimm R, et al. ZnO nanowire growth=a deeper understanding based on simulations and con- trolled oxygen experiments[J]. Cryst Growth Des, 2010,10(4) = 1585-1589.
  • 5Menzel A, Goldberg R, Burshtein G, et al. Role of carrier gas flow and species diffusion in nanowire growth from thermal CVD[J]. J Phys Chem C,2012,116(9)=5524-5530.
  • 6Tian H, Xu J, Tian Y, et al. Morphological evolution of ZnO nanostruetures : experimental and preliminary simulation studies [J]. Cryst Eng Comm,2012,14(17) z5539-5543.
  • 7Tian H,Xu J,Tian Y,et al. Effect of different Oz/N2 flow rate on the size and yield of ZnO nanostructures [J]. Cryst Eng Comm, 2013,15(13) : 2544-2548.
  • 8Cruickshank A C,Tay S E R, Illy B N, et al. Electrodeposition of ZnO nanostructures on molecular thin films[J]. Chem Ma- ter,2011,23(17) =3863-3870.
  • 9Damen T C,Porto S P S,Tell B. Raman effect in zinc oxide[J]. Phys Rev,1966,142(2) :570-574.
  • 10Xing Y J,Xi Z H,Xue Z Q,et aL Optical properties of the ZnO nanotubes synthesized via vapor phase growth[J]. Appl Phys Lett, 2003,83 = 1689.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部