期刊文献+

多摄像头侧视钻孔全景图像拼接 被引量:3

Panoramic image mosaic by multiple side-view cameras in the borehole
下载PDF
导出
摘要 目前,地质勘测主要采用数字式全景钻孔摄像获取具有真实感的孔壁全景图以进行地质分析,但是已有的全景图获取方法存在设备成本高或图像拼接过程复杂等不足,基此提出了一种水平环状均匀分布多个CCD摄像头的摄像模型,对钻孔孔壁四周360°进行拍摄获取图像,并对获取的图像进行畸变矫正。对钻孔孔壁的曲率造成的图像信息缺失,采用非均匀插值对其进行展开。通过提取图像SIFT特征点,利用基于(k-d)树的BBF算法确定图像的匹配点对,采用RANSAC算法二次消除错配求得变换矩阵。加权平均法在图像融合阶段的应用使得拼接图像光滑无缝,得到具有真实感的钻孔孔壁全景图。 At present,geological survey mainly adopts the digital panoramic borehole camera to obtain realistic panorama image of hole wall in geological analysis,but the existing methods of getting panorama image have shortcomings,such as high cost of equipment,complex image stitching process,etc. A camera model is presented, which is made of horizontal circular uniformly distributed multiple CCD camera to capture the borehole wall around 360 degrees and corrects the distorted images. The image information which is lost caused by the curvature of the borehole wall is recovered by non-uniform interpolation. Through extracting the image SIFT feature point, thematching points are determined based on( k-d) tree BBF( best bin first) algorithm,and then the false matching points are removed and the transformation matrix are got by using RANSAC( random sample consensus) algorithm. In the image fusion stage,the weighted average method is used to obtain a smoothly seamless mosaic image,and finally the realistic pictures of the borehole wall are obtained.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2017年第3期1092-1098,共7页 Journal of Guangxi University(Natural Science Edition)
基金 "十二五"国家科技支撑计划项目(2012BAB13B04) 国际(中国南非)科技合作项目(CS06-L02)
关键词 钻孔孔壁全景图 畸变矫正 非均匀插值 拼接图像 图像融合 borehole wall panorama distortion rectification non-uniform interpolation mosaic image image fusion
  • 相关文献

参考文献5

二级参考文献24

  • 1林诚凯,李惠,潘金贵.一种全景图生成的改进算法[J].计算机工程与应用,2004,40(35):69-71. 被引量:7
  • 2于景良,王德福,孙鼎俊.全景式孔内彩色电视系统的研制及其应用[J].大坝观测与土工测试,1996,20(4):30-32. 被引量:9
  • 3Su M S,Hwang W L,Cheng K Y.Analysis on multiresolution mosaic images[J].IEEE Transactions on Image Processing,2004,13(7):952-959.
  • 4Chen C Y,Klette R.Image stitching-comparisons and new techniques[C].Lecture Notes in Computer Science,1999.615-622.
  • 5Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 6Hartley R,Zisserman A.Multiple view geometry in computer vision[M].London:2nd Cambridge University Press,2004.8-11.
  • 7智平华 孙季丰.真实场景的图像拼接方法.中国图象图形学报,2003,(8):377-380.
  • 8PEREZ P, GARCIA N. Robust and accurate registration of images. with unknown relative orientation and exposure [ C]//Proceedings of the 2005 International Conference on Image Processing (ICIP 2005). Genoa: IEEE Press, 2005, 3.
  • 9LOWED G. Object recognition from local scale invariant features [ C] // Proceedings of the Seventh International Conference on Computer Vision (ICCV'99). Amsterdam: [ s. n. ], 1999.
  • 10LOWED G. Distinctive image features from scale-invariant key- points [ J]. International Journal of Computer Vision, 2004, 60(2) : 91 -110.

共引文献193

同被引文献31

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部