期刊文献+

Energy and Laplacian of fractal interpolation functions

Energy and Laplacian of fractal interpolation functions
下载PDF
导出
摘要 Abstract. In this paper, we first characterize the finiteness of fractal interpolation functions (FIFs) on post critical finite self-similar sets. Then we study the Laplacian of FIFs with uniform vertical scaling factors on the Sierpinski gasket (SG). As an application, we prove that the solution of the following Dirichlet problem on SG is a FIF with uniform vertical scaling factor 1/5 :△=0 on SG / {q1, q2, q3}, and u(qi)=ai, i = 1, 2, 3, where qi, i=1, 2, 3, are boundary points of SG. Abstract. In this paper, we first characterize the finiteness of fractal interpolation functions (FIFs) on post critical finite self-similar sets. Then we study the Laplacian of FIFs with uniform vertical scaling factors on the Sierpinski gasket (SG). As an application, we prove that the solution of the following Dirichlet problem on SG is a FIF with uniform vertical scaling factor 1/5 :△=0 on SG / {q1, q2, q3}, and u(qi)=ai, i = 1, 2, 3, where qi, i=1, 2, 3, are boundary points of SG.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2017年第2期201-210,共10页 高校应用数学学报(英文版)(B辑)
基金 Supported by the National Natural Science Foundation of China(11271327) Zhejiang Provincial National Science Foundation of China(LR14A010001)
关键词 Dirichlet problem fractal interpolation function Sierpinski gasket ENERGY Laplacian. Dirichlet problem, fractal interpolation function, Sierpinski gasket, energy, Laplacian.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部