期刊文献+

k轨道任务分配问题的可解性条件:图论方法(英文)

Solvability of k-track assignment problem:a graph approach
下载PDF
导出
摘要 将图论及一种新的数学分析工具——矩阵的半张量积(semi-tensor product of matrices,STP),作为研究工具,通过研究图的k内稳定集的充分必要条件,研究了k轨道任务分配问题的可解性条件.定义了图的顶点子集的特征向量,利用STP方法得到图的k内稳定集新的若干充分必要条件.基于这些新的充分必要条件,建立了能够搜索出图的所有k内稳定集的两种算法.进而将上述结果应用到k轨道任务分配问题,得到了该问题可解性的两个充分必要条件.此外,通过这些充分必要条件,也发现了一些有趣的现象.例如,完全最优方案(completely optimal schedules)的存在. The theory of graph and a new mathematical analysis tool, semi-tensor product(STP) of matrices are applied to consider the solvability conditions of k-track assignment problem by investigating the necessary and sufficient conditions of k-internally stable sets of graphs(k-ISS). By defining characteristic vectors for vertex subsets of graphs and using the STP, several new necessary and sufficient conditions of k-ISS are obtained, based on which two algorithms able to find all the k-ISSs of a graph are established. The results obtained are further applied to the k-track assignment problem, and two necessary and sufficient conditions of the solvability of the problem are proposed; also some interesting phenomena such as completely optimal schedules are discovered by the new method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2017年第4期457-466,共10页 Control Theory & Applications
基金 Supported by Key Scientific Research Program of the Higher Education Institutions of Henan Educational Committee(15A416005) 2015 Science Foundation of Henan University of Science and Technology for Youths(2015QN016) National Natural Science Foundation of China(61573199) Sub-project of National Key Research and Development Program(2016YFD0700103–2)
关键词 k轨道任务分配 k内稳定集 可解性 图论方法 矩阵的半张量积 k-track assignment k-internally stable set solvability graph method semi-tensor product of matrices
  • 相关文献

参考文献1

二级参考文献6

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部