摘要
本文研究了Stokes方程基于混合有限元离散的预处理方法.基于三角形剖分上速度场的连续P_2元以及压力场的P_0元,我们采用局部子区域逆矩阵建立了预处理子.通过分析预处理矩阵的特征值分布,我们证明了该预处理子大大改善原问题系数矩阵的条件数.本文给出了相应的数值结果.
In this paper, we provide and analyze a preconditioner for the mixed finite element approximation of the Stokes equations. The preconditioner uses some local subdomain inverse matrices based on the continuous P2 element for velocity field and the P0 element for pressure on triangles. By analyzing the eigenvalues distribution of the preconditioner, we prove that it can significantly reduce the condition number of the given problem. We also present some numerical experiments to demonstrate the theoretical results.
作者
李琴
Li Qin(School of Science, Beijing Technology and Business University, Beijing 100048, China)
出处
《数值计算与计算机应用》
2017年第2期81-90,共10页
Journal on Numerical Methods and Computer Applications
基金
国家自然科学基金(11426039
11471329
11571023)资助项目
关键词
STOKES方程
混合有限元
共轭梯度
预处理子
条件数
the Stokes equations
mixed finite element methods
conjugate gradient
preconditioners
condition number