期刊文献+

对称局部保持的半监督维数约简算法 被引量:4

A Symmetric Locally-Preserving Semi-Supervised Dimensionality Reduction Algorithm
下载PDF
导出
摘要 针对自然界较多图像具有对称的特点以及数据分布大多呈一定的流形结构情况,提出了一种对称局部保持的半监督维数约减(SLPSDR)算法.该算法使用矩阵定义维数约减映射矩阵元素之间的关系,使图像中对称的像素点对应的映射矩阵的值之间的差别最小;同时为了利用无标签训练样本保持数据的流形结构,要求低维空间中每个点的邻域关系与高维空间中的邻域关系相似.在CMU PIE、Extend Yale B、ORL、AR人脸数据库上的实验结果表明,图像数据明显的对称特点使得SLPSDR算法优于其他对比的维数约减算法. As many natural images are symmetrical and most of data distributions exhibit a manifold structure, a symmetric locally-preserving semi-supervised dimensionality reduction ( SLPSDR) algorithm is proposed. In the algorithm, a matrix is used to define the relationship between dimensionality reduction mapping matrix elements, so as to minimize the difference between the matrix elements of symmetric pixel points in an image. In order to keep the manifold structure of data by using the training samples without a label, it is required that the neighborhood relationship of each point in a low-dimension space is similar to that in a high-dimension space. The experimental results on CMU PIE, Extend YaleB, ORL and AR face databases show that the symmetric feature of image data causes the SLPSDR algorithm to be superior to other contrastive dimensionality reduction algorithms.
作者 徐金成 XU Jin-cheng(Department of Information Management, Guangdong Justice Police Vocational College, Guangzhou 510520, Guangdong, China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第3期89-96,共8页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61402118)~~
关键词 对称限制 半监督学习 维数约简 人脸识别 symmetry constraint semi-supervised learning dimensionality reduction face recognition
  • 相关文献

参考文献8

二级参考文献97

  • 1山世光,高文,唱轶钲,曹波,陈熙霖.人脸识别中的“误配准灾难”问题研究[J].计算机学报,2005,28(5):782-791. 被引量:18
  • 2李国宾,孟歆,关德林,魏海军.基于小波和分形提取磨粒图像特征参数的研究[J].内燃机学报,2006,24(5):476-479. 被引量:4
  • 3李岳,温熙森,吕克洪.基于核主成分分析的铁谱磨粒特征提取方法研究[J].国防科技大学学报,2007,29(2):113-116. 被引量:11
  • 4张学工.模式识别[M].3版.北京:清华大学出版社,2010.
  • 5吴暾华,周昌乐.平面旋转人脸检测与特征定位方法研究[J].电子学报,2007,35(9):1714-1718. 被引量:8
  • 6Yan Shuicheng, Wang Huan, Liu Jianzhuang, et al. Mis- alignment-robust face recognition [ J ]. IEEE Transactions on Image Processing,2010,19 (4) : 1087-1096.
  • 7Hamouz M, Kittler J, Kamarainen J K, et al. Feature-based affine-invariant localization of Faces[J]. IEEE Transac- tions on Pattern and Machine Intelligence, 2005,27 (5) : 1490-1495.
  • 8Nabatchian A, Abdel-Raheem E, Ahmadi M. Human face recognition using different moment invariants:a compara- tive study [ C ]//Proceedings of 1st International Congress on Image and Signal Processing. Sauya:Institution of Elec- tronic and Electrical Engineering Computer Society,2008 : 661-666.
  • 9Huang Rongbing, Su Changming, Lang Fangnian. Face feature extraction approach based on LDA & Gabor wave- let invariant moment [ J ]. Journal of Computational Infor- mation Systems, 2010,6 ( 4 ) : 1327-1334.
  • 10Petrou M, Kadyrov A. Affine invariant features from the trace transform [ J ]. IEEE Transactions on Pattern and Machine Intelligence ,2004,26 ( 1 ) : 30-44.

共引文献22

同被引文献11

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部