期刊文献+

出租汽车出行轨迹网络结构复杂性与空间分异特征 被引量:8

Structural complexity and spatial differentiation characteristics of taxi trip trajectory network
原文传递
导出
摘要 基于出租汽车运行GPS轨迹数据,构建了一类城市出行复杂网络;使用有向加权复杂网络测度分析方法,研究了出租汽车出行轨迹网络结构复杂性与空间分异特征;以西安市数据为例,进行了网络指标测算。分析结果表明:出租汽车出行轨迹网络的平均最短路径长度为2.070(边数),聚类系数为0.653,网络密度为0.554,说明了该网络是一类典型复杂网络,具有典型的小世界和集团化特征,且实际平均出行距离符合对数正态分布;网络的节点强度均值为411,最大K-核值为59,网络中强度小于600的节点占77.97%,强度小于300的节点占50.24%,呈现典型的大少小多的空间分布特点;该网络具有显著的空间分异特征,重要小区的出行辐射范围具有全局性特征,总体出行强度空间布局与城市公共交通干线走向一致,呈十字型分布;在整个网络范围内,强中心性交通小区呈现集聚性分布,重要交通枢纽(车站)与商圈等区域节点强度大于2 200;出租汽车上下客区域呈现空间非均衡特征,即在城市重要功能聚集区的上客水平高于下客水平。研究结果反映了出租汽车出行轨迹网络的拓扑结构与空间分异特征间的相互关系,揭示了城市居民活动的空间特征、活动规律及其与城市功能空间布局之间的相互影响作用。 Based on the GPS trajectory data of taxis, a kind of urban trip complex network was constructed. The structural complexity and differentiation characteristics of taxi trip trajectory network were researched by using the directed-weighted complex network measuring method. Based on the taxi trip data of Xi’an, the network indexes were calculated. Analysis result shows that the average shortest path length of taxi trip trajectory network is 2.07(edge number), the clustering coefficient is 0.653, and the network density is 0.554. So the network is a kind of typical complex network, with typical “small-world” and “collective” characteristic, and the actual average trip distance obeys log-normal distribution. The average value of node strengths for the network is 411, the largest K-nuclear value is 59, and the proportions of nodes with the strengths being less than 600 and 300 are 77.97% and 50.24%, respectively, which shows the typical spatial distribution that is described as “less nodes with greater strengths but more nodes with less strengths”. The network has significant spatial differentiation characteristic, the traveling radiation scopes of important traffic analysis zones(TAZs)have overall characteristic, the whole spatial layout of trip intensities is consistent with public transport arterial lines, and presents a cross type distribution. The high-level centricity TAZs in whole network present agglomeration distribution, and the node strengths of important transport hubs(stations)and CBD areas are more than 2 200. The distributions of pick-up and drop-off areas of taxis are non-equilibrium, and the pick-up level is higher than the drop-off level in the important functional zones of city. Obviously, this research result indicates the interaction relationship between the topology structure and spatial differentiation of taxi trip trajectory network, and reveals urban resident activities’ spatial characteristics, movement rules and the mutual influence of urban functions’ spatial layout and resident activities. 2 tabs, 12 figs, 31 refs.
作者 付鑫 杨宇 孙皓 FU Xin YANG Yu SUN Hao(School of Economics and Management, Chang'an University, Xi'an 710064, Shaanxi, China Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China)
出处 《交通运输工程学报》 EI CSCD 北大核心 2017年第2期106-116,共11页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(41301130) 教育部人文社会科学研究基金项目(12YJCZH051) 中央高校基本科研业务费专项资金项目(310823161001)
关键词 交通工程 出租汽车 复杂网络 GPS轨迹数据 拓扑结构 空间分异 traffic engineering taxi complex network GPS trajectory data topology structurespatial differentiation
  • 相关文献

参考文献14

二级参考文献186

共引文献296

同被引文献80

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部