摘要
函数列非一致收敛性判别问题是数学分析中最重要的"非概念"之一,也是数学分析学习重难点之一,是后续函数项级数相关解析性质研究的基础.通过逆向思维,对数学分析教材内容进行剖析,总结了五种判别非一致收敛的方法,并给出了证明及应用实例.
Judging problem on the non - uniform convergence of function sequence is one of the most importantnon concept and difficult point in mathematical analysis, which is also research foundation for the follow -up func- tion series related analysis properties. Through reverse thinking, based on mathematical analysis teaching material content, the five methods of judging on the non - uniform convergence of function sequence are summarized. The proof and application example are given.
出处
《阴山学刊(自然科学版)》
2017年第3期5-6,共2页
Yinshan Academic Journal(Natural Science Edition)
基金
安徽省高校优秀青年人才支持计划重点项目(gxyq ZD2016339)
宿州学院综合理科实践教育基地(szxysjjd201205)
关键词
函数列
非一致收敛
判别方法
Function sequence
Non - uniform convergence
Judged method