期刊文献+

复合电解质Ce_(0.8)Gd_(0.2)O_(2-α)-(Li/K)_2CO_3的中温燃料电池性能

Intermediate Temperature Fuel Cell Performance of the Composite Electrolyte Ce_(0.8)Gd_(0.2)O_(2-α)-(Li/K)_2CO_3
原文传递
导出
摘要 用溶胶凝胶法低温(900℃,通常高温烧结温度为1400℃)制备了Ce_(0.8)Gd_(0.2)O_(2-α),并与(Li/K)_2CO_3共熔体进行复合。XRD结果表明(Li/K)_2CO_3与Ce_(0.8)Gd_(0.2)O_(2-α)复合后没有发生化学反应,SEM结果表明复合电解质致密无孔洞。考察了复合电解质在400~600℃下干燥氮气气氛中的电导率,结果表明,温度为600℃时,复合电解质的电导率达到最大值6.4×10^(-2)S·cm^(-1),高于单一CeO_2材料在相同条件下的电导率。氧分压与电导率关系曲线表明复合电解质具有良好的氧离子导电性。H_2/O_2燃料电池性能测试表明,复合电解质GDC-SG-LK在600℃开路条件下的电解质阻抗、极化阻抗分别为2.7和0.8Ω,最大输出功率密度为267mW·cm^(-2)。 Ce0.8 Gd0.2 O2-α was synthesized by sol-gel method at 900℃ , which is much lower than theconventional sintering temperature (1400℃), and was further compounded with (Li/K)2CO3. The XRD pattern showed that there is no chemical reaction between Ce0.8 Gd0.2O2-αand (Li/K)2 CO3- The SEM images demonstrated that the composite electrolyte is sufficiently dense and does not have holes. The conductivities of the composite electrolyte in dry nitrogen atmosphere were measured using electrochemical analyzer. The highest conductivity was observed to be 6.4 × 10^-2 S.cm -1 at 600℃ , which is higher than that of single CeO2 material. The H2/O2 fuel cell performance test showed that the electrolyte impedance and polarization impedance under open-circuit condition are 2. 711 and 0. 811, respectively, and the maximum output power density is 267mW·cm -2 at 600℃.
作者 邹影 王洪涛 盛良全 Zou Ying Wang Hongtao Sheng Liangquan(Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemical and Material Engineering, Fuyang Teachers College, Fuyang 23603)
出处 《化学通报》 CSCD 北大核心 2017年第6期558-562,共5页 Chemistry
基金 国家自然科学基金项目(51402052 21402029) 安徽省省级研究项目(KJ2016A548 2015zy037 zdyj-0081) 四川省重点实验室开放课题(hx2015005)资助
关键词 CEO2 复合 电解质 燃料电池 电导率 CeO2, Composite, Electrolyte, Fuel cell, Conductivity
  • 相关文献

参考文献8

二级参考文献169

  • 1李文忠,有机化学,1997年,347页
  • 2詹志刚,张永生,肖金生,潘牧.质子交换膜燃料电池梯度扩散层水传输研究[J].华中科技大学学报(自然科学版),2007,35(9):45-48. 被引量:11
  • 3S Ramakrishna, K Fujihara, W E Teo et al. An Introduction to Electrospinning and Nanofibers. World Scientific Publishing Co. Pte. Ltd., 2005:15-17.
  • 4S Ramakrishna, K Fujihara, W E Teo et al. An Introduction to Electrospinning and Nanofibers. World Scientific Publishing Co. Pte. Ltd. , 2005 : 117 - 130.
  • 5Z G Yin, Q D Zheng. Adv. Energy Mater., 2012, 2(2): 179 -218.
  • 6F S Kim, G Ren, S A Jenekhe. Chem. Mater. , 2011, 23 (3): 682-732.
  • 7X F Lu, W J Zhang, C Wang et al. Prog. Polym. Sci., 2011, 36(5): 671 -712.
  • 8D Li, Y N Xia. Adv. Mater. , 2004, 16(14): 1151 -1170.
  • 9E Zussman, A Theron, A L Yarin. Appl. Phys. Lett. , 2003, 82(6): 973-975.
  • 10A Theron, E Zussman, A L Yarin. Polymer, 2004, 45(6): 2017 -2030.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部