期刊文献+

基于Cadence Palladium Z1的图形芯片功能验证平台

Functional Verification Platform of Graphics Chip Based on Cadence Palladium Z1
下载PDF
导出
摘要 在集成电路设计过程中,验证的工作量占到所有工作量的70%。大型的计算机图形处理芯片的功能验证,测试周期很长,覆盖率要求高,对于验证工程师提出了比较高的挑战。基于Cadence最新一代企业级CPU并行计算仿真器(Palladium Z1),提出了一种各平台通用,高效,流程简洁并且覆盖率较高的测试平台。该方法涵盖了测试指令集设计,GPU测试的原理分析。并给出了在Cadence Z1平台上,测试向量在测试平台上的运行过程和回归测试的结果。 It is very important for RFID to measure a set of more complete test item before it reach the hand of end user. There are a series of international trade standard for RFID test, in which set up serious prescribe for RFID spec and performance including its characters and application ranges. In this text, Besides it study RFID from application technology, development, and working principle, the test project for a type of RFID, which has been put into product, was made about RF character measurement, logical function measurement, memory measure, and simulation measurement under special condition.
作者 肖德宇 牛一心 XIAO Deyu Roger NIU(Shanghai Zhaoxin Semiconductor Co., Ltd, Shanghai 201203, China.)
出处 《集成电路应用》 2017年第6期64-68,共5页 Application of IC
基金 工业和信息化部国家核高基(核心电子器件 高端通用芯片及基础软件产品)专项基金(2014ZX01029101)
关键词 计算机图形芯片 GPU 验证方法学 仿真器 通用测试平台 回归测试 computer graphics chip, GPU, verification methodology, emulator, common testbench, regression test
  • 相关文献

参考文献5

二级参考文献22

  • 1吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 2Nvidia Corporation.NVIDIA CUDA compute unified device architecture programming guide 2.0[EB/OL].(2008).http://www.nvidia.com/ cuda.
  • 3Kruger J,Westermann R.Linear algebra operators for GPU implementation of numerical algorithms[J].ACM Transactions on Graphics (TOG), 2003,22(3) : 908-916.
  • 4Lefohn A,Kniss J M,Strzodka R,et al.Glift:Generic,efficient,randora-access GPU data structures[J].ACM Transactions on Graphics, 2006,25( 1 ) : 60-99.
  • 5Owens J D,Luebke D,Govindaraju N,et al.A survey of generalpurpose computation on graphics hardware[J].Computer Graphics Forum,2007,26: 80-113.
  • 6Barrachina S,Castillo M,Igual F D,et al.Quintana-ort'l.FLAG@lab: An M-script API for linear algebra operations on graphics processors.FLAME working note #30 ICC 01-02-2008[R].Depto de Ingenieria y Ciencia de Computadores, Universidad Jaume 1,2008.
  • 7Fujimoto N.Faster matrix-vector multiplication on GeForce 8800GTX[J]. IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2008,2008.
  • 8Hwu W,Kirk D.Programming massively parallel processors[EB/OL]. (2007).http ://courses.ece.uiuc.edu/ece498/a11/.
  • 9Nvidia.CUDA2.0[Z].2008.
  • 10李贵山.PCI局部总线开发者指南[M].西安:西安电子科技大学出版社,1996..

共引文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部