期刊文献+

基于用户-主题关联挖掘的虚拟社区推荐方法研究 被引量:2

Research on Virtual Community Recommendation Method Based on User-topic Association Mining
下载PDF
导出
摘要 [目的/意义]针对现有的虚拟社区推荐方法缺乏兼顾推荐准确性和新颖性的问题,将数据挖掘技术与信息推荐方法相结合,提出了基于用户-主题关联挖掘的虚拟社区推荐方法。[方法/过程]该方法通过构建用户-用户相似度矩阵、社区-社区主题距离矩阵、基于矩阵分解的智能推荐等过程,使得推荐结果能在保证高准确性的前提下,兼顾推荐的新颖性。[结果/结论]实验结果表明,该方法取得了理想的预期结果,推荐效果既能保证准确性,又能体现新颖性。 [ Purpose/Significance I Aimed at solving the problem of lacking accuracy and novelty of the existing virtual community rec- ommendation method, this paper combined the data mining technology with information recommendation method and proposed the recom- mendation method of virtual community based on the user-topic association mining. [ Method/Process ] The method can not only make the recommendation result more reasonable, but also ensures its novelty by constructing usel-user similarity matrix, community-community topic distance matrix and intelligent recommendation based on matrix decomposition. [ Result/Conclusion] The experimental results show that the method has obtained the ideal expected recommendation results, not only guaranteeing the accuracy, but also reflecting the novelty.
作者 胡潜 明均仁
出处 《情报杂志》 CSSCI 北大核心 2017年第6期156-159,185,共5页 Journal of Intelligence
基金 中国博士后科学基金项目"基于科研关系网络的信息服务融合研究"(编号:2015M581149)的研究成果之一
关键词 关联挖掘 智能推荐 虚拟社区 association mining intelligent recommendation virtual community
  • 相关文献

参考文献6

二级参考文献190

  • 1武汉大学图书馆[EB/OL].http://www.lib.whu.edu.cn/web/index.asp?obj_id=102.[2010-12-13].
  • 2Wang Z, Sun LF, Zhu WW, Yang SQ, Li HZ, Wu DP. Joint social and content recommendation for user-generated videos in online social network. IEEE Trans. on Multimedia, 2013,15(3):698-710. [doi: 10.1109/TMM.212.2237022].
  • 3Quijano-Sanchez L, Recio-Garcia J, Diaz-Agudo B. Social factors in group recommender systems. ACM Trans. on Intelligent Systems and Technology, 2013,4(1):Article No.8. [doi: 10.1145/2414425/2414433].
  • 4Social Network Analysis. A brief introduction. 2007. http://orgnet.Com/sna.html.
  • 5Jamali M, Ester M. A transitivity aware matrix factorization model for recommendation in social networks. In: Proc. of the IJCAI. AAAI Press, 2011. 2644-2649. [doi: IO.5591/978-1-57735-516-8/IJCAI11-440].
  • 6Jamali M, Ester M. A matrix factorization technique with trust propagation tbr recommendation in social networks. In: t'roe, ot tlae ReeSys 2010. New York: ACM Press, 2010. 135-142. [doi: 10.1145/1864708.1864736].
  • 7Moghaddam S, Jamali M, Ester M. ETF: Extended tensor factorization model for personalizing prediction of review helpfulness. In: Proc. of the ACM WSDM 2012. New York: ACM Press, 2012. 163-172. Idol: 10.1145/2124295.2124316].
  • 8Hoens TR, Blanton M. A private and reliable recommendation system for social networks. In: Proc. of the IEEE SocialCom. Washington: IEEE Computer Society, 2011. 816-825. Idol: 10.1109/SocialCom.2010.124].
  • 9Berjani B, Strufe T. A recommendation system for spots in location-based online social networks. In: Proc. of the SNS 2011. New York: ACM Press, 201 I. 1-4. [doi: 10.I 145/1989656.1989660].
  • 10Kim HK, Ryu YU. Cho Y. Customer-Driven content recommendation over a network of customers. IEEE Trans. on Systems, Man and Cybernetics, Part A, 2012,42(1):48-56.

共引文献161

同被引文献23

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部