期刊文献+

基于混合算法与支持向量机的电力变压器故障诊断 被引量:1

Fault Diagnosis of Power Transformer Based on Hybrid Algorithm and Support Vector Machine
下载PDF
导出
摘要 为了改进、优化支持向量机的核函数参数σ以及惩罚因子C,提出了基于粒子群与差分进化相结合的混合优化算法(PSODE),从而获得最优的故障诊断模型。通过引入四种基准测试函数:Sphere函数、Rosenbrock函数、Rastrigin函数、Griewank函数对PSO、DE、PSODE的性能进行测试,仿真结果表明PSODE是一种具有较强优化性能的算法。为了进一步验证该方法的有效性,通过对油中溶解的H2、CH4、C2H6、C2H4、C2H2的含量进行分析,可以较准确地识别低温过热、中温过热、高温过热、局部放电、火花放电、电弧放电以及正常状态。 In order to improve and optimize the kemel function of support vector machines(SVM) is a parameter sigma and penalty factor C, proposing a hybrid optimization algorithm(PSODE) which based on the combination with differential evolution and support vector machine, obtaining the optimal model of fault diagnosis. By introducing four benchmark functions:sphere function, rosenbrock function and rastrigin function, griewank function to test the performance of the PSO, DE, PSODE, the simulation results show that performance of PSODE is a kind of strong optimization algorithm. In order to further verify the effectiveness of the method, analysing the content of n2, CH4, C2H6, C2H4, C2H2, which dis- solved in oil can accurately identify low overheating, medium temperature overheating, high temperature overheating, par- tial discharge, spark discharge and arc discharge and normal state.
作者 贾立敬 JIA Li-jing(Qingcheng Power Supply Bureau, Guangdong Power Grid Corporation, Qingyuan 511500, China)
出处 《电气开关》 2017年第3期30-34,共5页 Electric Switchgear
关键词 支持向量机 粒子群差分进化 EMD PSO DE
  • 相关文献

参考文献1

二级参考文献10

  • 1Eberharl R, Kennedy J. A new optimizer using particle swarm theory [ A ]. Proceedings of the International Symposium on Micro Machine and Human Science [ C ]. Piscataway, N J, USA: IEEE, 1995. 39-43.
  • 2Kennedy J, Eberhart R. Particle swarm optimization [ A ]. Proceedings of the IEEE International Conference on Neural Networks [C]. Piscataway, NJ, USA: IEEE, 1995. 1942-1948.
  • 3Kennedy J, Eberhart R, Shi Y. Swarm Intelligence [ M ]. San Francisco, USA: Morgan Kaufmann Publishers, 2001.
  • 4Juang C F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34 (2) : 997 - 1006.
  • 5Li L L, Wang L, Liu L H. An effective hybrid PSOSA strategy for optimization and its application to parameter estimation [ J ]. Applied Mathematics and Computation, 2006, 179 ( 1 ) : 135-146.
  • 6Ye B, Zhu C Z, Guo C X, et al. Generating extended fuzzy basis function networks using hybrid algorithm [ A]. Proceedings of the 2nd International Conference on Fuzzy Systems and Knowledge Discovery [ C]. Berlin, Germany: Springer-Verlag, 2006. 79- 88.
  • 7Price K V. Differential evolution: A fast and simple numerical optimizer [ A]. Proceedings of the 1996 Biennial Conference of the North American Fuzzy Information Processing Society [ C ].Piscataway, NJ, USA: IEEE, 1996. 524-527.
  • 8Shi Y, Eberhart R. A modified particle swarm optimizer [ A ]. Proceedings of the 1998 IEEE International Conference on Evolutionary Computation [C]. Piscataway, NJ, USA: IEEE, 1998. 69 - 73.
  • 9Store R. On the usage of differential evolution for function optimi- zation [ A]. Proceedings of the Biennial Conference of the North American Fuzzy Information Processing Society [ C]. Piscataway, NJ, USA: IEEE. 1996. 519-523.
  • 10Shi Y, Eberhart R. Empirical study of particle swarm optimization [ A ]. Proceedings of the 1999 Congress on Evolutionary Computation [C]. Piscataway, NJ, USA: IEEE, 1999. 1945- 1950.

共引文献69

同被引文献28

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部