摘要
为了改进、优化支持向量机的核函数参数σ以及惩罚因子C,提出了基于粒子群与差分进化相结合的混合优化算法(PSODE),从而获得最优的故障诊断模型。通过引入四种基准测试函数:Sphere函数、Rosenbrock函数、Rastrigin函数、Griewank函数对PSO、DE、PSODE的性能进行测试,仿真结果表明PSODE是一种具有较强优化性能的算法。为了进一步验证该方法的有效性,通过对油中溶解的H2、CH4、C2H6、C2H4、C2H2的含量进行分析,可以较准确地识别低温过热、中温过热、高温过热、局部放电、火花放电、电弧放电以及正常状态。
In order to improve and optimize the kemel function of support vector machines(SVM) is a parameter sigma and penalty factor C, proposing a hybrid optimization algorithm(PSODE) which based on the combination with differential evolution and support vector machine, obtaining the optimal model of fault diagnosis. By introducing four benchmark functions:sphere function, rosenbrock function and rastrigin function, griewank function to test the performance of the PSO, DE, PSODE, the simulation results show that performance of PSODE is a kind of strong optimization algorithm. In order to further verify the effectiveness of the method, analysing the content of n2, CH4, C2H6, C2H4, C2H2, which dis- solved in oil can accurately identify low overheating, medium temperature overheating, high temperature overheating, par- tial discharge, spark discharge and arc discharge and normal state.
作者
贾立敬
JIA Li-jing(Qingcheng Power Supply Bureau, Guangdong Power Grid Corporation, Qingyuan 511500, China)
出处
《电气开关》
2017年第3期30-34,共5页
Electric Switchgear