摘要
给出了一阶偏微分方程特征微分方程组的一种基于Frobenius定理的几何解释,通过研究发现根据Frobenius定理可以从一阶偏微分方程直接得到其特征微分方程组;在此基础上说明如何利用几何方法从Hamilton正则方程出发找到与之对应的Hamilton-Jacobi方程.这种方法可以被用于非保守或非完整Hamilton力学问题的研究中,经典Hamilton-Jacobi方法是这种方法的一个特例.
With the differential geometry method, a geometric explanation based on the Frobe- nius theorem for characteristic equations of 1st-order partial differential equations was presen- ted. According to the Frobenius theorem, the characteristic equations can be deduced directly from the 1st-order partial differential equations. Based on this, how to use the geometric meth- od to find the corresponding Hamilton-Jacobi equations from Hamiltonian canonical equations was discussed. This method could be utilized to address the nonconservative or nonholonomic Hamiltonian mechanical problems. The classical Hamilton-Jacobi method is only a special case of this method.
作者
肖静
刘畅
王勇
XIAO Jing LIU Chang WANG Yong(School of Information Technology, Guangdong Medical University, Dongguan , Guangdong 523808, P.R. China School of Physics, Liaoning University, Shenyang 110035, P.R. China State Key Laboratory of Structural Analysis for Industrial Equipment ( Dalian University of Technology) , Department of Engineering Mechanics, Dalian University of Technology, Dalian , Liaoning 115024, P.R. China)
出处
《应用数学和力学》
CSCD
北大核心
2017年第6期708-714,共7页
Applied Mathematics and Mechanics
基金
国家自然科学基金(11572145
11202090)
辽宁省教育厅科学技术一般项目(L2013005)
广东省自然科学基金(2015A030310127)
中国博士后科学基金(2014M560203)~~