期刊文献+

基于自适应伽玛校正的去雾算法

Defog Algorith Based on Adaptive Gamma Correction
下载PDF
导出
摘要 考虑到目前去雾算法复杂度高、效果不稳定和处理结果模糊等问题,为了更好地提高雾霾环境的图像能见度,提出基于自适应伽马校正的去雾算法。首先利用暗原色优先模型构造透射率图,然后通过对比度评估算法来计算环境光系数,以获取初始去雾图像,再利用自适应伽玛校正算法增强初始去雾图像的亮度和对比度,从而最大限度地提高事物的能见度。结合实例,对算法进行了详细的阐述,实验结果表明,该算法切实可行。 Fog and haze environment will greatly reduce the visibility of the image, the fog algorith has become a hot spot in thefield of image sensor. Aiming at the problems of the existing defog algorith including high complexities, instable processing effects,and dim result images, to better improve the visibility of fog and haze environment a defog algorith based on adaptive gamma correction is proposed. Firstly the dark channel prior model is utilized to produce the transmittance map. And then calculate the coefficient of ambient light through the contrast evaluation algorithm, in order to obtain the initial image to the fog. The next step is usingthe algorith based on adaptive gamma correction to enhance the brightness and contrast of the initial defogging image, so as to maximize the visibility. The algorithm is described in detail, and the experimental results show that the algorithm is feasible.
作者 辛婷婷 肖雪梅 XIN Ting-ting, XIAO Xue-mei (Jiangxi University of Science and Technology, Nanchang 330013, China)
机构地区 江西理工大学
出处 《电脑知识与技术》 2017年第4期227-229,共3页 Computer Knowledge and Technology
关键词 去雾算法 自适应伽玛校正 暗原色模型 对比度评估算法 环境光感知 defog algorith adaptive gamma correction dark channel prior model contrast evaluation algorith ambient light perception
  • 相关文献

参考文献2

二级参考文献26

  • 1Tan R T. Visibility in bad weather from a single image. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorgae, USA: IEEE, 2008. 1-8.
  • 2Tarel J P, Hautiére N. Fast visibility restoration from a single color or gray level image. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 2201-2208.
  • 3He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 1956-1963.
  • 4Zhou W, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 5Carnec M, Le Callet P, Barba D. Objective quality assessment of color images based on a generic perceptual reduced reference. Image Communication, 2008, 23(4): 239-256.
  • 6Sheikh H R, Bovik A C, Cormack L. No-reference quality assessment using natural scene statistics: JPEG 2000. IEEE Transactions on Image Processing, 2005, 14(11): 1918-1927.
  • 7Hautiére N, Tarel J P, Aubert D, Dumont E. Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Analysis and Stereology Journal, 2008, 27(2): 87-95.
  • 8姚波, 黄磊, 刘昌平. 去雾增强图像质量客观比较方法的研究. 中国模式识别会议论文集, 南京, 中国: IEEE, 2009. 1-5.
  • 9Nayar S K, Narasimhan S G. Vision in bad weather. In: Proceedings of the 2002 IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 2002. 820-827.
  • 10Huang K Q, Wang Q, Wu Z Y. Natural color image enhancement and evaluation algorithm based on human visual system. Computer Vision and Image Understanding, 2006, 103(1): 52-63.

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部