摘要
A dielectric barrier discharge(DBD) reactor is introduced to generate H2O2 by non-thermal plasma with a mixture of oxygen and water mist produced by an ultrasonic atomizer.The results of our experiment show that the energy yield and concentration of the generated H2O2 in the pulsed discharge are much higher than that in AC discharge,due to its high energy efficiency and low heating effect.Micron-sized liquid droplets produced by an ultrasonic atomizer in water mist have large specific surface area,which greatly reduces mass transfer resistance between hydroxyl radicals and water liquids,leading to higher energy yield and H2O2 concentration than in our previous research.The influence of applied voltage,discharge frequency,and environmental temperature on the generated H2O2 is discussed in detail from the viewpoint of the DBD mechanism.The H2O2 concentration of 30 mg l^-1,with the energy yield of 2 gkW^-1h^-1 is obtained by pulsed discharge in our research.
A dielectric barrier discharge(DBD) reactor is introduced to generate H2O2 by non-thermal plasma with a mixture of oxygen and water mist produced by an ultrasonic atomizer.The results of our experiment show that the energy yield and concentration of the generated H2O2 in the pulsed discharge are much higher than that in AC discharge,due to its high energy efficiency and low heating effect.Micron-sized liquid droplets produced by an ultrasonic atomizer in water mist have large specific surface area,which greatly reduces mass transfer resistance between hydroxyl radicals and water liquids,leading to higher energy yield and H2O2 concentration than in our previous research.The influence of applied voltage,discharge frequency,and environmental temperature on the generated H2O2 is discussed in detail from the viewpoint of the DBD mechanism.The H2O2 concentration of 30 mg l^-1,with the energy yield of 2 gkW^-1h^-1 is obtained by pulsed discharge in our research.