摘要
In this paper,volume coupled surface barrier discharge(V-SBD) with three structures possessing different volumes is excited by sine AC power in atmospheric air.Discharge images,waveforms of applied voltage and discharge current,and optical emission spectra simulating rotational and vibrational temperatures are recorded and analyzed.The effects of applied voltage on emission intensities of N2(C^3Πu→ B^3Πg) and N2^+(B^2∑u^+ → X^2Eg^+),and rotational and vibrational temperatures are investigated.The results show that as applied voltage rises,emission intensities and rotational temperatures increase while vibrational temperatures decrease.In addition it is found that,as applied voltage varies,the rotational temperature of surface discharge changes faster than that of volume discharge.
In this paper,volume coupled surface barrier discharge(V-SBD) with three structures possessing different volumes is excited by sine AC power in atmospheric air.Discharge images,waveforms of applied voltage and discharge current,and optical emission spectra simulating rotational and vibrational temperatures are recorded and analyzed.The effects of applied voltage on emission intensities of N2(C^3Πu→ B^3Πg) and N2^+(B^2∑u^+ → X^2Eg^+),and rotational and vibrational temperatures are investigated.The results show that as applied voltage rises,emission intensities and rotational temperatures increase while vibrational temperatures decrease.In addition it is found that,as applied voltage varies,the rotational temperature of surface discharge changes faster than that of volume discharge.
基金
supported by National Natural Science Foundation of China(Grant Nos.51377014,51407022 and 51677019)
the National Key Research and Development program of China(No.2016YFC0207200)