期刊文献+

Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification 被引量:3

Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification
原文传递
导出
摘要 When using the image mutual information to assess the quality of reconstructed image in pseudothermal light ghost imaging, a negative exponential behavior with respect to the measurement number is observed. Based on information theory and a few simple and verifiable assumptions, semi-quantitative model of image mutual information under varying measurement numbers is established. It is the Gaussian characteristics of the bucket detector output probability distribution that leads to this negative exponential behavior. Designed experiments verify the model. When using the image mutual information to assess the quality of reconstructed image in pseudo- thermal light ghost imaging, a negative exponential behavior with respect to the measurement number is observed. Based on information theory and a few simple and verifiable assumptions, semi-quantitative model of image mutual information under varying measurement numbers is established. It is the Gaussian characteristics of the bucket detector output probability distribution that leads to this negative exponential behavior. Designed experiments verify the model.
出处 《Science Bulletin》 SCIE EI CAS CSCD 2017年第10期717-723,共7页 科学通报(英文版)
基金 supported by the National Natural Science Foundation of China (61631014, 61401036, 61471051 and 61531003) the National Science Fund for Distinguished Young Scholars of China (61225003) the China Postdoctoral Science Foundation (2015M580008) the Youth Research and Innovation Program of BUPT (2015RC12)
关键词 Ghost imaging Image mutual information Information theory Image quality assessment 重建图像 负指数 互信息 行为 验证 成像 观测 建模
  • 相关文献

参考文献4

二级参考文献32

  • 1D. N. Klyshko, Sov. Phys. Usp. 31, 74 (1988).
  • 2D. N. Klyshko, Phys. Lett. A 132, 299, (1988).
  • 3T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, Phys. Rev. A 52, R3429 (1995).
  • 4T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, Phys. Rev. A 53, 2804 (1996).
  • 5M. D'Angelo, M. V. Chekhova, and Y. H. Shih, Phys. Rev. Lett. 87, 013602 (2001).
  • 6M. D'Angelo, Y. H. Kim, S. P. Kulik, and Y. Shih, Phys. Rev. Lett. 92, 233601 (2004).
  • 7G. Scarcelli, A. Valencia, and Y. Shih, Europhys. Lett. 68, 618 (2004).
  • 8A. Valencia, G. Scarcelli, M. D'Angelo, and Y. H. Shih, Phys. Rev. Lett. 94, 063601 (2005).
  • 9R. S. Bennink, S. J. Bentley, and R. W. Boyd, Phys. Rev. Lett. 89, 113601 (2002).
  • 10A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, Phys. Rev. Lett. 93, 093602 (2004).

共引文献13

同被引文献18

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部