摘要
Particulate matter (PM) has received considerable attention from scientists because of its adverse effects on human health. Unmanned aerial vehicles (UAVs) offer a new approach for monitoring PM in inaccessi- ble or dangerous locations. Computational fluid dynamics software and a wind-tunnel experiment were used to evaluate the flow field at 20, 30, and 40m/s, as well as the trajectories of PM1, PM2.5, and PMlo. The numerical simulation results show that the PM sampling head can be installed 440-680 mm from the UAV nose, and at least 130, 135, and 145 mm below the horizontal axis for free stream velocities of 20, 30, and 40 m/s, respectively. Wind-tunnel experiment results confirmed and improved on those numer- ical results, and showed that the PM sampling head can be 500-600 mm aft the UAV nose, at vertical distances below the horizontal axis of at least 138 mm for 500-550 mm, and 157 mm for 550-600 mm. In addition, sampling points can be located at either side of the optimal ranges, not only on the center line or the UAV.
Particulate matter (PM) has received considerable attention from scientists because of its adverse effects on human health. Unmanned aerial vehicles (UAVs) offer a new approach for monitoring PM in inaccessi- ble or dangerous locations. Computational fluid dynamics software and a wind-tunnel experiment were used to evaluate the flow field at 20, 30, and 40m/s, as well as the trajectories of PM1, PM2.5, and PMlo. The numerical simulation results show that the PM sampling head can be installed 440-680 mm from the UAV nose, and at least 130, 135, and 145 mm below the horizontal axis for free stream velocities of 20, 30, and 40 m/s, respectively. Wind-tunnel experiment results confirmed and improved on those numer- ical results, and showed that the PM sampling head can be 500-600 mm aft the UAV nose, at vertical distances below the horizontal axis of at least 138 mm for 500-550 mm, and 157 mm for 550-600 mm. In addition, sampling points can be located at either side of the optimal ranges, not only on the center line or the UAV.